IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v55y2011i1p12-25.html
   My bibliography  Save this article

Alternating imputation posterior estimation of models with crossed random effects

Author

Listed:
  • Cho, S.-J.
  • Rabe-Hesketh, S.

Abstract

Generalized linear mixed models or latent variable models for categorical data are difficult to estimate if the random effects or latent variables vary at non-nested levels, such as persons and test items. Clayton and Rasbash (1999) suggested an Alternating Imputation Posterior (AIP) algorithm for approximate maximum likelihood estimation. For item response models with random item effects, the algorithm iterates between an item wing in which the item mean and variance are estimated for given person effects and a person wing in which the person mean and variance are estimated for given item effects. The person effects used for the item wing are sampled from the conditional posterior distribution estimated in the person wing and vice versa. Clayton and Rasbash (1999) used marginal quasi-likelihood (MQL) and penalized quasi-likelihood (PQL) estimation within the AIP algorithm, but this method has been shown to produce biased estimates in many situations, so we use maximum likelihood estimation with adaptive quadrature. We apply the proposed algorithm to the famous salamander mating data, comparing the estimates with many other methods, and to an educational testing dataset. We also present a simulation study to assess performance of the AIP algorithm and the Laplace approximation with different numbers of items and persons and a range of item and person variances.

Suggested Citation

  • Cho, S.-J. & Rabe-Hesketh, S., 2011. "Alternating imputation posterior estimation of models with crossed random effects," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 12-25, January.
  • Handle: RePEc:eee:csdana:v:55:y:2011:i:1:p:12-25
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(10)00160-X
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Germán Rodríguez & Noreen Goldman, 2001. "Improved estimation procedures for multilevel models with binary response: a case-study," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 164(2), pages 339-355.
    2. Robert Mislevy, 1991. "Randomization-based inference about latent variables from complex samples," Psychometrika, Springer;The Psychometric Society, vol. 56(2), pages 177-196, June.
    3. Joe, Harry, 2008. "Accuracy of Laplace approximation for discrete response mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 52(12), pages 5066-5074, August.
    4. Hua-Hua Chang & William Stout, 1993. "The asymptotic posterior normality of the latent trait in an IRT model," Psychometrika, Springer;The Psychometric Society, vol. 58(1), pages 37-52, March.
    5. Paul Boeck, 2008. "Random Item IRT Models," Psychometrika, Springer;The Psychometric Society, vol. 73(4), pages 533-559, December.
    6. R. Darrell Bock & Marcus Lieberman, 1970. "Fitting a response model forn dichotomously scored items," Psychometrika, Springer;The Psychometric Society, vol. 35(2), pages 179-197, June.
    7. Stephen Schilling & R. Bock, 2005. "High-dimensional maximum marginal likelihood item factor analysis by adaptive quadrature," Psychometrika, Springer;The Psychometric Society, vol. 70(3), pages 533-555, September.
    8. Rabe-Hesketh, Sophia & Skrondal, Anders & Pickles, Andrew, 2005. "Maximum likelihood estimation of limited and discrete dependent variable models with nested random effects," Journal of Econometrics, Elsevier, vol. 128(2), pages 301-323, October.
    9. Sophia Rabe-Hesketh & Anders Skrondal, 2012. "Multilevel and Longitudinal Modeling Using Stata, 3rd Edition," Stata Press books, StataCorp LP, edition 3, number mimus2, November.
    10. J. G. Booth & J. P. Hobert, 1999. "Maximizing generalized linear mixed model likelihoods with an automated Monte Carlo EM algorithm," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(1), pages 265-285.
    11. W. Albers & R. Does & Tj. Imbos & M. Janssen, 1989. "A stochastic growth model applied to repeated tests of academic knowledge," Psychometrika, Springer;The Psychometric Society, vol. 54(3), pages 451-466, September.
    12. Noh, Maengseok & Lee, Youngjo, 2007. "REML estimation for binary data in GLMMs," Journal of Multivariate Analysis, Elsevier, vol. 98(5), pages 896-915, May.
    13. Butler, J S & Moffitt, Robert, 1982. "A Computationally Efficient Quadrature Procedure for the One-Factor Multinomial Probit Model," Econometrica, Econometric Society, vol. 50(3), pages 761-764, May.
    14. Diaz, Rafael E., 2007. "Comparison of PQL and Laplace 6 estimates of hierarchical linear models when comparing groups of small incident rates in cluster randomised trials," Computational Statistics & Data Analysis, Elsevier, vol. 51(6), pages 2871-2888, March.
    15. Jean-Paul Fox & Cees Glas, 2001. "Bayesian estimation of a multilevel IRT model using gibbs sampling," Psychometrika, Springer;The Psychometric Society, vol. 66(2), pages 271-288, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sun-Joo Cho & Jennifer Gilbert & Amanda Goodwin, 2013. "Explanatory Multidimensional Multilevel Random Item Response Model: An Application to Simultaneous Investigation of Word and Person Contributions to Multidimensional Lexical Representations," Psychometrika, Springer;The Psychometric Society, vol. 78(4), pages 830-855, October.
    2. Susan Embretson & Xiangdong Yang, 2013. "A Multicomponent Latent Trait Model for Diagnosis," Psychometrika, Springer;The Psychometric Society, vol. 78(1), pages 14-36, January.
    3. Hanneke Geerlings & Cees Glas & Wim Linden, 2011. "Modeling Rule-Based Item Generation," Psychometrika, Springer;The Psychometric Society, vol. 76(2), pages 337-359, April.
    4. Sun-Joo Cho & Allan Cohen & Brian Bottge, 2013. "Detecting Intervention Effects Using a Multilevel Latent Transition Analysis with a Mixture IRT Model," Psychometrika, Springer;The Psychometric Society, vol. 78(3), pages 576-600, July.
    5. repec:spr:psycho:v:82:y:2017:i:3:d:10.1007_s11336-017-9555-z is not listed on IDEAS
    6. Sun-Joo Cho & Paul Boeck & Susan Embretson & Sophia Rabe-Hesketh, 2014. "Additive Multilevel Item Structure Models with Random Residuals: Item Modeling for Explanation and Item Generation," Psychometrika, Springer;The Psychometric Society, vol. 79(1), pages 84-104, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:55:y:2011:i:1:p:12-25. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/csda .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.