IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

REML estimation for binary data in GLMMs

Listed author(s):
  • Noh, Maengseok
  • Lee, Youngjo
Registered author(s):

    The restricted maximum likelihood (REML) procedure is useful for inferences about variance components in mixed linear models. However, its extension to hierarchical generalized linear models (HGLMs) is often hampered by analytically intractable integrals. Numerical integration such as Gauss-Hermite quadrature (GHQ) is generally not recommended when the dimensionality of the integral is high. With binary data various extensions of the REML method have been suggested, but they have had unsatisfactory biases in estimation. In this paper we propose a statistically and computationally efficient REML procedure for the analysis of binary data, which is applicable over a wide class of models and design structures. We propose a bias-correction method for models such as binary matched pairs and discuss how the REML estimating equations for mixed linear models can be modified to implement more general models.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Journal of Multivariate Analysis.

    Volume (Year): 98 (2007)
    Issue (Month): 5 (May)
    Pages: 896-915

    in new window

    Handle: RePEc:eee:jmvana:v:98:y:2007:i:5:p:896-915
    Contact details of provider: Web page:

    Order Information: Postal:

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    in new window

    1. Thomas R. Ten Have & A. Russell Localio, 1999. "Empirical Bayes Estimation of Random Effects Parameters in Mixed Effects Logistic Regression Models," Biometrics, The International Biometric Society, vol. 55(4), pages 1022-1029, December.
    2. Yun, Sungcheol & Lee, Youngjo, 2004. "Comparison of hierarchical and marginal likelihood estimators for binary outcomes," Computational Statistics & Data Analysis, Elsevier, vol. 45(3), pages 639-650, April.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:98:y:2007:i:5:p:896-915. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.