IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

An Overview of Methods in the Analysis of Dependent ordered catagorical Data: Assumptions and Implications

Listed author(s):
  • Högberg, Hans


    (Centre for Research and Development, Uppsala University and Country,Council of Gävleborg, Sweden)

  • Svensson, Elisabeth


    (Department of Business, Economics, Statistics and Informatics)

Registered author(s):

    Subjective assessments of pain, quality of life, ability etc. measured by rating scales and questionnaires are common in clinical research. The resulting responses are categorical with an ordered structure and the statistical methods must take account of this type of data structure. In this paper we give an overview of methods for analysis of dependent ordered categorical data and a comparison of standard models and measures with nonparametric augmented rank measures proposed by Svensson. We focus on assumptions and issues behind model specifications and data as well as implications of the methods. First we summarise some fundamental models for categorical data and two main approaches for repeated ordinal data; marginal and cluster-specific models. We then describe models and measures for application in agreement studies and finally give a summary of the approach of Svensson. The paper concludes with a summary of important aspects.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: no

    Paper provided by Örebro University, School of Business in its series Working Papers with number 2008:7.

    in new window

    Length: 31 pages
    Date of creation: 08 Aug 2008
    Handle: RePEc:hhs:oruesi:2008_007
    Contact details of provider: Postal:
    Örebro University School of Business, SE - 701 82 ÖREBRO, Sweden

    Phone: 019-30 30 00
    Fax: 019-33 25 46
    Web page:

    More information through EDIRC

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    in new window

    1. Thomas R. Ten Have & A. Russell Localio, 1999. "Empirical Bayes Estimation of Random Effects Parameters in Mixed Effects Logistic Regression Models," Biometrics, The International Biometric Society, vol. 55(4), pages 1022-1029, December.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:hhs:oruesi:2008_007. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ()

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.