IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v37y2010i2p307-320.html
   My bibliography  Save this article

Bias Reduction of Likelihood Estimators in Semiparametric Frailty Models

Author

Listed:
  • IL DO HA
  • MAENGSEOK NOH
  • YOUNGJO LEE

Abstract

. Frailty models with a non‐parametric baseline hazard are widely used for the analysis of survival data. However, their maximum likelihood estimators can be substantially biased in finite samples, because the number of nuisance parameters associated with the baseline hazard increases with the sample size. The penalized partial likelihood based on a first‐order Laplace approximation still has non‐negligible bias. However, the second‐order Laplace approximation to a modified marginal likelihood for a bias reduction is infeasible because of the presence of too many complicated terms. In this article, we find adequate modifications of these likelihood‐based methods by using the hierarchical likelihood.

Suggested Citation

  • Il Do Ha & Maengseok Noh & Youngjo Lee, 2010. "Bias Reduction of Likelihood Estimators in Semiparametric Frailty Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(2), pages 307-320, June.
  • Handle: RePEc:bla:scjsta:v:37:y:2010:i:2:p:307-320
    DOI: 10.1111/j.1467-9469.2009.00671.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9469.2009.00671.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9469.2009.00671.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. R. Henderson & P. Oman, 1999. "Effect of frailty on marginal regression estimates in survival analysis," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(2), pages 367-379, April.
    2. Samuli Ripatti & Juni Palmgren, 2000. "Estimation of Multivariate Frailty Models Using Penalized Partial Likelihood," Biometrics, The International Biometric Society, vol. 56(4), pages 1016-1022, December.
    3. Il Do Ha & Youngjo Lee, 2005. "Comparison of hierarchical likelihood versus orthodox best linear unbiased predictor approaches for frailty models," Biometrika, Biometrika Trust, vol. 92(3), pages 717-723, September.
    4. James Vaupel & Kenneth Manton & Eric Stallard, 1979. "The impact of heterogeneity in individual frailty on the dynamics of mortality," Demography, Springer;Population Association of America (PAA), vol. 16(3), pages 439-454, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vallejos, Catalina A. & Steel, Mark F.J., 2017. "Incorporating unobserved heterogeneity in Weibull survival models: A Bayesian approach," Econometrics and Statistics, Elsevier, vol. 3(C), pages 73-88.
    2. Il Do Ha & Liming Xiang & Mengjiao Peng & Jong-Hyeon Jeong & Youngjo Lee, 2020. "Frailty modelling approaches for semi-competing risks data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(1), pages 109-133, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jing Wang, 2019. "Weighted estimation for multivariate shared frailty models for complex surveys," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(3), pages 469-479, July.
    2. Djeundje, Viani Biatat & Crook, Jonathan, 2018. "Incorporating heterogeneity and macroeconomic variables into multi-state delinquency models for credit cards," European Journal of Operational Research, Elsevier, vol. 271(2), pages 697-709.
    3. María-Dolores Huete-Morales & Esteban Navarrete-Álvarez & María-Jesús Rosales-Moreno & María-José Del-Moral-Ávila & José-Manuel Quesada-Rubio, 2020. "Modelling the survival function of the Spanish population by the Wong–Tsui model with the incorporation of frailty and covariates," Letters in Spatial and Resource Sciences, Springer, vol. 13(2), pages 151-163, August.
    4. Alex Mota & Eder A. Milani & Vinicius F. Calsavara & Vera L. D. Tomazella & Jeremias Leão & Pedro L. Ramos & Paulo H. Ferreira & Francisco Louzada, 2021. "Weighted Lindley frailty model: estimation and application to lung cancer data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 27(4), pages 561-587, October.
    5. Elizabeth Wrigley-Field, 2020. "Multidimensional Mortality Selection: Why Individual Dimensions of Frailty Don’t Act Like Frailty," Demography, Springer;Population Association of America (PAA), vol. 57(2), pages 747-777, April.
    6. Andreas Wienke & Konstantin G. Arbeev & Isabella Locatelli & Anatoli I. Yashin, 2003. "A simulation study of different correlated frailty models and estimation strategies," MPIDR Working Papers WP-2003-018, Max Planck Institute for Demographic Research, Rostock, Germany.
    7. Niels Keiding & Katrine Lykke Albertsen & Helene Charlotte Rytgaard & Anne Lyngholm Sørensen, 2019. "Prevalent cohort studies and unobserved heterogeneity," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(4), pages 712-738, October.
    8. Virginia Zarulli, 2016. "Unobserved Heterogeneity of Frailty in the Analysis of Socioeconomic Differences in Health and Mortality," European Journal of Population, Springer;European Association for Population Studies, vol. 32(1), pages 55-72, February.
    9. Marcelo Resende & Vicente Cardoso & Luis Otávio Façanha, 2016. "Determinants of survival of newly created SMEs in the Brazilian manufacturing industry: an econometric study," Empirical Economics, Springer, vol. 50(4), pages 1255-1274, June.
    10. Sukhmani Sidhu & Kanchan Jain & Suresh Kumar Sharma, 2018. "Bayesian estimation of generalized gamma shared frailty model," Computational Statistics, Springer, vol. 33(1), pages 277-297, March.
    11. Mitra Rahimzadeh & Ebrahim Hajizadeh & Farzad Eskandari, 2011. "Non-mixture cure correlated frailty models in Bayesian approach," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(8), pages 1651-1663, August.
    12. Rounak Dey & Wei Zhou & Tuomo Kiiskinen & Aki Havulinna & Amanda Elliott & Juha Karjalainen & Mitja Kurki & Ashley Qin & Seunggeun Lee & Aarno Palotie & Benjamin Neale & Mark Daly & Xihong Lin, 2022. "Efficient and accurate frailty model approach for genome-wide survival association analysis in large-scale biobanks," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    13. Alex Mota & Eder A. Milani & Jeremias Leão & Pedro L. Ramos & Paulo H. Ferreira & Oilson G. Junior & Vera L. D. Tomazella & Francisco Louzada, 2023. "A new cure rate frailty regression model based on a weighted Lindley distribution applied to stomach cancer data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(3), pages 883-909, September.
    14. Andreas Wienke, 2003. "Frailty models," MPIDR Working Papers WP-2003-032, Max Planck Institute for Demographic Research, Rostock, Germany.
    15. David B. Dunson & Zhen Chen, 2004. "Selecting Factors Predictive of Heterogeneity in Multivariate Event Time Data," Biometrics, The International Biometric Society, vol. 60(2), pages 352-358, June.
    16. Robin Henderson & Ralitsa Mihaylova & Paul Oman, 2019. "A dual frailty model for lifetime analysis in maritime transportation," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(4), pages 739-756, October.
    17. Abrahantes, Jose Cortinas & Legrand, Catherine & Burzykowski, Tomasz & Janssen, Paul & Ducrocq, Vincent & Duchateau, Luc, 2007. "Comparison of different estimation procedures for proportional hazards model with random effects," Computational Statistics & Data Analysis, Elsevier, vol. 51(8), pages 3913-3930, May.
    18. Bagdonavicius, Vilijandas & Nikulin, Mikhail, 2000. "On goodness-of-fit for the linear transformation and frailty models," Statistics & Probability Letters, Elsevier, vol. 47(2), pages 177-188, April.
    19. Yahia Salhi & Pierre-Emmanuel Thérond, 2016. "Age-Specific Adjustment of Graduated Mortality," Working Papers hal-01391285, HAL.
    20. Feehan, Dennis & Wrigley-Field, Elizabeth, 2020. "How do populations aggregate?," SocArXiv 2fkw3, Center for Open Science.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:37:y:2010:i:2:p:307-320. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.