IDEAS home Printed from https://ideas.repec.org/a/bla/jorssa/v172y2009i3p659-687.html
   My bibliography  Save this article

Prediction in multilevel generalized linear models

Author

Listed:
  • Anders Skrondal
  • Sophia Rabe‐Hesketh

Abstract

Summary. We discuss prediction of random effects and of expected responses in multilevel generalized linear models. Prediction of random effects is useful for instance in small area estimation and disease mapping, effectiveness studies and model diagnostics. Prediction of expected responses is useful for planning, model interpretation and diagnostics. For prediction of random effects, we concentrate on empirical Bayes prediction and discuss three different kinds of standard errors; the posterior standard deviation and the marginal prediction error standard deviation (comparative standard errors) and the marginal sampling standard deviation (diagnostic standard error). Analytical expressions are available only for linear models and are provided in an appendix. For other multilevel generalized linear models we present approximations and suggest using parametric bootstrapping to obtain standard errors. We also discuss prediction of expectations of responses or probabilities for a new unit in a hypothetical cluster, or in a new (randomly sampled) cluster or in an existing cluster. The methods are implemented in gllamm and illustrated by applying them to survey data on reading proficiency of children nested in schools. Simulations are used to assess the performance of various predictions and associated standard errors for logistic random‐intercept models under a range of conditions.

Suggested Citation

  • Anders Skrondal & Sophia Rabe‐Hesketh, 2009. "Prediction in multilevel generalized linear models," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 172(3), pages 659-687, June.
  • Handle: RePEc:bla:jorssa:v:172:y:2009:i:3:p:659-687
    DOI: 10.1111/j.1467-985X.2009.00587.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-985X.2009.00587.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-985X.2009.00587.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Stephen Schilling & R. Bock, 2005. "High-dimensional maximum marginal likelihood item factor analysis by adaptive quadrature," Psychometrika, Springer;The Psychometric Society, vol. 70(3), pages 533-555, September.
    2. Nicholas T. Longford, 2001. "Simulation‐based diagnostics in random‐coefficient models," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 164(2), pages 259-273.
    3. Duchateau, Luc & Janssen, Paul, 2005. "Understanding Heterogeneity in Generalized Mixed and Frailty Models," The American Statistician, American Statistical Association, vol. 59, pages 143-146, May.
    4. David Afshartous & Michael Wolf, 2007. "Avoiding ‘data snooping’ in multilevel and mixed effects models," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 170(4), pages 1035-1059, October.
    5. David Afshartous & Jan de Leeuw, 2005. "Prediction in Multilevel Models," Journal of Educational and Behavioral Statistics, , vol. 30(2), pages 109-139, June.
    6. Stephen W. Raudenbush & JDouglas Willms, 1995. "The Estimation of School Effects," Journal of Educational and Behavioral Statistics, , vol. 20(4), pages 307-335, December.
    7. Rabe-Hesketh, Sophia & Skrondal, Anders & Pickles, Andrew, 2005. "Maximum likelihood estimation of limited and discrete dependent variable models with nested random effects," Journal of Econometrics, Elsevier, vol. 128(2), pages 301-323, October.
    8. Sophia Rabe‐Hesketh & Anders Skrondal, 2006. "Multilevel modelling of complex survey data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 169(4), pages 805-827, October.
    9. Harvey Goldstein & David J. Spiegelhalter, 1996. "League Tables and Their Limitations: Statistical Issues in Comparisons of Institutional Performance," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 159(3), pages 385-409, May.
    10. Robert Tsutakawa & Jane Johnson, 1990. "The effect of uncertainty of item parameter estimation on ability estimates," Psychometrika, Springer;The Psychometric Society, vol. 55(2), pages 371-390, June.
    11. Edward Frees & Jee-Seon Kim, 2006. "Multilevel Model Prediction," Psychometrika, Springer;The Psychometric Society, vol. 71(1), pages 79-104, March.
    12. Robert J. Mislevy, 1986. "Recent Developments in the Factor Analysis of Categorical Variables," Journal of Educational and Behavioral Statistics, , vol. 11(1), pages 3-31, March.
    13. Anders Skrondal & Sophia Rabe‐Hesketh, 2007. "Latent Variable Modelling: A Survey," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 34(4), pages 712-745, December.
    14. R. Bock & Murray Aitkin, 1981. "Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm," Psychometrika, Springer;The Psychometric Society, vol. 46(4), pages 443-459, December.
    15. Hua-Hua Chang & William Stout, 1993. "The asymptotic posterior normality of the latent trait in an IRT model," Psychometrika, Springer;The Psychometric Society, vol. 58(1), pages 37-52, March.
    16. Sophia Rabe-Hesketh & Anders Skrondal & Andrew Pickles, 2004. "Generalized multilevel structural equation modeling," Psychometrika, Springer;The Psychometric Society, vol. 69(2), pages 167-190, June.
    17. Anders Skrondal & Sophia Rabe-Hesketh, 2007. "Redundant Overdispersion Parameters in Multilevel Models for Categorical Responses," Journal of Educational and Behavioral Statistics, , vol. 32(4), pages 419-430, December.
    18. Jiming Jiang & P. Lahiri, 2001. "Empirical Best Prediction for Small Area Inference with Binary Data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 53(2), pages 217-243, June.
    19. Thomas Warm, 1989. "Weighted likelihood estimation of ability in item response theory," Psychometrika, Springer;The Psychometric Society, vol. 54(3), pages 427-450, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sophia Rabe‐Hesketh & Anders Skrondal, 2006. "Multilevel modelling of complex survey data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 169(4), pages 805-827, October.
    2. Sophia Rabe-Hesketh & Anders Skrondal, 2007. "Multilevel and Latent Variable Modeling with Composite Links and Exploded Likelihoods," Psychometrika, Springer;The Psychometric Society, vol. 72(2), pages 123-140, June.
    3. Li Cai, 2010. "High-dimensional Exploratory Item Factor Analysis by A Metropolis–Hastings Robbins–Monro Algorithm," Psychometrika, Springer;The Psychometric Society, vol. 75(1), pages 33-57, March.
    4. Vitoratou, Silia & Ntzoufras, Ioannis & Moustaki, Irini, 2016. "Explaining the behavior of joint and marginal Monte Carlo estimators in latent variable models with independence assumptions," LSE Research Online Documents on Economics 57685, London School of Economics and Political Science, LSE Library.
    5. Sun-Joo Cho & Paul Boeck & Susan Embretson & Sophia Rabe-Hesketh, 2014. "Additive Multilevel Item Structure Models with Random Residuals: Item Modeling for Explanation and Item Generation," Psychometrika, Springer;The Psychometric Society, vol. 79(1), pages 84-104, January.
    6. George Leckie & Harvey Goldstein, 2009. "The limitations of using school league tables to inform school choice," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 172(4), pages 835-851, October.
    7. An, Xinming & Bentler, Peter M., 2012. "Efficient direct sampling MCEM algorithm for latent variable models with binary responses," Computational Statistics & Data Analysis, Elsevier, vol. 56(2), pages 231-244.
    8. Cho, S.-J. & Rabe-Hesketh, S., 2011. "Alternating imputation posterior estimation of models with crossed random effects," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 12-25, January.
    9. Anders Skrondal & Jouni Kuha, 2012. "Improved Regression Calibration," Psychometrika, Springer;The Psychometric Society, vol. 77(4), pages 649-669, October.
    10. Yang Liu & Ji Seung Yang, 2018. "Bootstrap-Calibrated Interval Estimates for Latent Variable Scores in Item Response Theory," Psychometrika, Springer;The Psychometric Society, vol. 83(2), pages 333-354, June.
    11. Ogasawara, Haruhiko, 2013. "Asymptotic cumulants of ability estimators using fallible item parameters," Journal of Multivariate Analysis, Elsevier, vol. 119(C), pages 144-162.
    12. Christopher J. Urban & Daniel J. Bauer, 2021. "A Deep Learning Algorithm for High-Dimensional Exploratory Item Factor Analysis," Psychometrika, Springer;The Psychometric Society, vol. 86(1), pages 1-29, March.
    13. Bianconcini, Silvia & Cagnone, Silvia, 2012. "Estimation of generalized linear latent variable models via fully exponential Laplace approximation," Journal of Multivariate Analysis, Elsevier, vol. 112(C), pages 183-193.
    14. Silvia Cagnone & Paola Monari, 2013. "Latent variable models for ordinal data by using the adaptive quadrature approximation," Computational Statistics, Springer, vol. 28(2), pages 597-619, April.
    15. Yang Liu, 0. "A Riemannian Optimization Algorithm for Joint Maximum Likelihood Estimation of High-Dimensional Exploratory Item Factor Analysis," Psychometrika, Springer;The Psychometric Society, vol. 0, pages 1-30.
    16. Vassilis Vasdekis & Silvia Cagnone & Irini Moustaki, 2012. "A Composite Likelihood Inference in Latent Variable Models for Ordinal Longitudinal Responses," Psychometrika, Springer;The Psychometric Society, vol. 77(3), pages 425-441, July.
    17. Diana M. Hechavarría & Siri A. Terjesen & Amy E. Ingram & Maija Renko & Rachida Justo & Amanda Elam, 2017. "Taking care of business: the impact of culture and gender on entrepreneurs’ blended value creation goals," Small Business Economics, Springer, vol. 48(1), pages 225-257, January.
    18. Michela Battauz & Ruggero Bellio, 2011. "Structural Modeling of Measurement Error in Generalized Linear Models with Rasch Measures as Covariates," Psychometrika, Springer;The Psychometric Society, vol. 76(1), pages 40-56, January.
    19. Björn Andersson & Tao Xin, 2021. "Estimation of Latent Regression Item Response Theory Models Using a Second-Order Laplace Approximation," Journal of Educational and Behavioral Statistics, , vol. 46(2), pages 244-265, April.
    20. Silvia Cagnone & Francesco Bartolucci, 2017. "Adaptive Quadrature for Maximum Likelihood Estimation of a Class of Dynamic Latent Variable Models," Computational Economics, Springer;Society for Computational Economics, vol. 49(4), pages 599-622, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssa:v:172:y:2009:i:3:p:659-687. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.