IDEAS home Printed from https://ideas.repec.org/p/bri/cmpowp/09-208.html
   My bibliography  Save this paper

The Limitations of Using School League Tables to Inform School Choice

Author

Listed:
  • George Leckie
  • Harvey Goldstein

Abstract

In England, so-called ‘league tables’ based upon examination results and test scores are published annually, ostensibly to inform parental choice of secondary schools. A crucial limitation of these tables is that the most recent published information is based on the current performance of a cohort of pupils who entered secondary schools several years earlier, whereas for choosing a school it is the future performance of the current cohort that is of interest. We show that there is substantial uncertainty in predicting such future performance and that incorporating this uncertainty leads to a situation where only a handful of schools’ future performances can be separated from both the overall mean and from one another with an acceptable degree of precision. This suggests that school league tables, including value-added ones, have very little to offer as guides to school choice.

Suggested Citation

  • George Leckie & Harvey Goldstein, 2009. "The Limitations of Using School League Tables to Inform School Choice," The Centre for Market and Public Organisation 09/208, The Centre for Market and Public Organisation, University of Bristol, UK.
  • Handle: RePEc:bri:cmpowp:09/208
    as

    Download full text from publisher

    File URL: http://www.bristol.ac.uk/cmpo/publications/papers/2009/wp208.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. David Afshartous & Michael Wolf, 2007. "Avoiding ‘data snooping’ in multilevel and mixed effects models," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 170(4), pages 1035-1059, October.
    2. Harvey Goldstein & Michael J. R. Healy, 1995. "The Graphical Presentation of a Collection of Means," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 158(1), pages 175-177, January.
    3. Sheila M. Bird & Cox Sir David & Vern T. Farewell & Goldstein Harvey & Holt Tim & Smith Peter C., 2005. "Performance indicators: good, bad, and ugly," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 168(1), pages 1-27, January.
    4. Stephen W. Raudenbush & JDouglas Willms, 1995. "The Estimation of School Effects," Journal of Educational and Behavioral Statistics, , vol. 20(4), pages 307-335, December.
    5. Harvey Goldstein & David J. Spiegelhalter, 1996. "League Tables and Their Limitations: Statistical Issues in Comparisons of Institutional Performance," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 159(3), pages 385-409, May.
    6. Harvey Goldstein & Sally Thomas, 1996. "Using Examination Results as Indicators of School and College Performance," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 159(1), pages 149-163, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anders Skrondal & Sophia Rabe‐Hesketh, 2009. "Prediction in multilevel generalized linear models," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 172(3), pages 659-687, June.
    2. Pickery, Jan, 2002. "Contextual effects on the vote in Germany: A multilevel analysis," Discussion Papers, Research Unit: Institutions and Social Change FS III 02-202, WZB Berlin Social Science Center.
    3. David I. Ohlssen & Linda D. Sharples & David J. Spiegelhalter, 2007. "A hierarchical modelling framework for identifying unusual performance in health care providers," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 170(4), pages 865-890, October.
    4. Jill Johnes, 2006. "Measuring Efficiency: A Comparison of Multilevel Modelling and Data Envelopment Analysis in the Context of Higher Education," Bulletin of Economic Research, Wiley Blackwell, vol. 58(2), pages 75-104, April.
    5. Columbu, Silvia & Porcu, Mariano & Sulis, Isabella, 2021. "University choice and the attractiveness of the study area: Insights on the differences amongst degree programmes in Italy based on generalised mixed-effect models," Socio-Economic Planning Sciences, Elsevier, vol. 74(C).
    6. Heikki Pursiainen & Mika Kortelainen & Jenni Pääkkönen, 2014. "Impact of School Quality on Educational Attainment - Evidence from Finnish High Schools," ERSA conference papers ersa14p711, European Regional Science Association.
    7. Isabella Sulis & Mariano Porcu & Vincenza Capursi, 2019. "On the Use of Student Evaluation of Teaching: A Longitudinal Analysis Combining Measurement Issues and Implications of the Exercise," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 142(3), pages 1305-1331, April.
    8. Gwyn Bevan & Richard Hamblin, 2009. "Hitting and missing targets by ambulance services for emergency calls: effects of different systems of performance measurement within the UK," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 172(1), pages 161-190, January.
    9. Paul Hewson & Keming Yu, 2008. "Quantile regression for binary performance indicators," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 24(5), pages 401-418, September.
    10. Corak, Miles & Lauzon, Darren, 2009. "Differences in the distribution of high school achievement: The role of class-size and time-in-term," Economics of Education Review, Elsevier, vol. 28(2), pages 189-198, April.
    11. David Afshartous & Michael Wolf, 2007. "Avoiding ‘data snooping’ in multilevel and mixed effects models," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 170(4), pages 1035-1059, October.
    12. Kramarz, Francis & Machin, Stephen & Ouazad, Amine, 2008. "What Makes a Test Score? The Respective Contributions of Pupils, Schools, and Peers in Achievement in English Primary Education," IZA Discussion Papers 3866, Institute of Labor Economics (IZA).
    13. Mutz, Rüdiger & Daniel, Hans-Dieter, 2018. "The bibliometric quotient (BQ), or how to measure a researcher’s performance capacity: A Bayesian Poisson Rasch model," Journal of Informetrics, Elsevier, vol. 12(4), pages 1282-1295.
    14. Magne Mogstad & Joseph P. Romano & Azeem Shaikh & Daniel Wilhelm, 2020. "Inference for Ranks with Applications to Mobility across Neighborhoods and Academic Achievement across Countries," NBER Working Papers 26883, National Bureau of Economic Research, Inc.
    15. Giuseppina Guagnano & Maria Rita Sebastiani, 2018. "Away from Dissatisfaction, Closer to Well-Being: A Multidimensional Synthetic Measure," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 136(3), pages 977-997, April.
    16. Neil H. Spencer & Antony Fielding, 2002. "A Comparison of Modelling Strategies for Value-Added Analyses of Educational Data," Computational Statistics, Springer, vol. 17(1), pages 103-116, March.
    17. Elena Pirani & Daniele Vignoli, 2021. "Childbearing Across Partnerships in Italy: Prevalence, Correlates, Social Gradient," Econometrics Working Papers Archive 2021_15, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".
    18. Cory Koedel & Jiaxi Li, 2016. "The Efficiency Implications Of Using Proportional Evaluations To Shape The Teaching Workforce," Contemporary Economic Policy, Western Economic Association International, vol. 34(1), pages 47-62, January.
    19. Carolyn J. Heinrich & Laurence E. Lynn Jr., 1999. "Means And Ends: A Comparative Study Of Empirical Methods For Investigating Governance And Performance," JCPR Working Papers 109, Northwestern University/University of Chicago Joint Center for Poverty Research.
    20. Nils Gutacker & Andrew Street, 2018. "Multidimensional performance assessment of public sector organisations using dominance criteria," Health Economics, John Wiley & Sons, Ltd., vol. 27(2), pages 13-27, February.

    More about this item

    Keywords

    Examination results; Institutional comparisons; League tables; Multilevel modelling; Performance indicators; Ranking; School choice; School effectiveness; Value-added;
    All these keywords.

    JEL classification:

    • I2 - Health, Education, and Welfare - - Education

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bri:cmpowp:09/208. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/cmbriuk.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (email available below). General contact details of provider: https://edirc.repec.org/data/cmbriuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.