IDEAS home Printed from https://ideas.repec.org/p/bdi/wptemi/td_1092_16.html
   My bibliography  Save this paper

Copula-based random effects models for clustered data

Author

Listed:
  • Santiago Pereda Fernández

    () (Bank of Italy)

Abstract

Sorting and spillovers can create correlation in individual outcomes. In this situation, standard discrete choice estimators cannot consistently estimate the probability of joint and conditional events, and alternative estimators can yield incoherent statistical models or intractable estimators. I propose a random effects estimator that models the dependence among the unobserved heterogeneity of individuals in the same cluster using a parametric copula. This estimator makes it possible to compute joint and conditional probabilities of the outcome variable, and is statistically coherent. I describe its properties, establishing its efficiency relative to standard random effects estimators, and propose a specification test for the copula. The likelihood function for each cluster is an integral whose dimension equals the size of the cluster, which may require high-dimensional numerical integration. To overcome the curse of dimensionality from which methods like Monte Carlo integration suffer, I propose an algorithm that works for Archimedean copulas. I illustrate this approach by analysing labour supply in married couples.

Suggested Citation

  • Santiago Pereda Fernández, 2016. "Copula-based random effects models for clustered data," Temi di discussione (Economic working papers) 1092, Bank of Italy, Economic Research and International Relations Area.
  • Handle: RePEc:bdi:wptemi:td_1092_16
    as

    Download full text from publisher

    File URL: http://www.bancaditalia.it/pubblicazioni/temi-discussione/2016/2016-1092/en_tema_1092.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kaya, Ezgi, 2014. "Heterogeneous Couples, Household Interactions and Labor Supply Elasticities of Married Women," Cardiff Economics Working Papers E2014/18, Cardiff University, Cardiff Business School, Economics Section.
    2. Gary Chamberlain, 2010. "Binary Response Models for Panel Data: Identification and Information," Econometrica, Econometric Society, vol. 78(1), pages 159-168, January.
    3. Kerwin Charles & Erik Hurst & Alexandra Killewald, 2013. "Marital Sorting and Parental Wealth," Demography, Springer;Population Association of America (PAA), vol. 50(1), pages 51-70, February.
    4. Arellano, Manuel, 2016. "Modelling optimal instrumental variables for dynamic panel data models," Research in Economics, Elsevier, vol. 70(2), pages 238-261.
    5. Manski, Charles F, 1987. "Semiparametric Analysis of Random Effects Linear Models from Binary Panel Data," Econometrica, Econometric Society, vol. 55(2), pages 357-362, March.
    6. Prokhorov, Artem & Schmidt, Peter, 2009. "Likelihood-based estimation in a panel setting: Robustness, redundancy and validity of copulas," Journal of Econometrics, Elsevier, vol. 153(1), pages 93-104, November.
    7. Victor Chernozhukov & Iván Fernández‐Val & Jinyong Hahn & Whitney Newey, 2013. "Average and Quantile Effects in Nonseparable Panel Models," Econometrica, Econometric Society, vol. 81(2), pages 535-580, March.
    8. repec:zbw:rwirep:0484 is not listed on IDEAS
    9. Heiss, Florian & Winschel, Viktor, 2008. "Likelihood approximation by numerical integration on sparse grids," Journal of Econometrics, Elsevier, vol. 144(1), pages 62-80, May.
    10. Manuel Arellano & Stèphane Bonhomme, 2011. "Nonlinear Panel Data Analysis," Annual Review of Economics, Annual Reviews, vol. 3(1), pages 395-424, September.
    11. Chamberlain, Gary, 1984. "Panel data," Handbook of Econometrics, in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 2, chapter 22, pages 1247-1318, Elsevier.
    12. Schlenker, Eva, 2013. "The Labour Supply of Women in STEM," VfS Annual Conference 2013 (Duesseldorf): Competition Policy and Regulation in a Global Economic Order 79981, Verein für Socialpolitik / German Economic Association.
    13. Fox, Jeremy T. & Kim, Kyoo il & Ryan, Stephen P. & Bajari, Patrick, 2012. "The random coefficients logit model is identified," Journal of Econometrics, Elsevier, vol. 166(2), pages 204-212.
    14. Iván Fernández‐Val & Joonhwah Lee, 2013. "Panel data models with nonadditive unobserved heterogeneity: Estimation and inference," Quantitative Economics, Econometric Society, vol. 4(3), pages 453-481, November.
    15. Eric Gautier & Yuichi Kitamura, 2013. "Nonparametric Estimation in Random Coefficients Binary Choice Models," Econometrica, Econometric Society, vol. 81(2), pages 581-607, March.
    16. Michele Belloni & Rob Alessie, 2013. "Retirement Choices in Italy: What an Option Value Model Tells Us," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 75(4), pages 499-527, August.
    17. Heckman, James J, 1978. "Dummy Endogenous Variables in a Simultaneous Equation System," Econometrica, Econometric Society, vol. 46(4), pages 931-959, July.
    18. Kenneth L. Judd & Ben Skrainka, 2011. "High performance quadrature rules: how numerical integration affects a popular model of product differentiation," CeMMAP working papers CWP03/11, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    19. Myoung-jae Lee, 1999. "A Root-N Consistent Semiparametric Estimator for Related-Effect Binary Response Panel Data," Econometrica, Econometric Society, vol. 67(2), pages 427-434, March.
    20. Áureo de Paula, 2013. "Econometric Analysis of Games with Multiple Equilibria," Annual Review of Economics, Annual Reviews, vol. 5(1), pages 107-131, May.
    21. Eva Schlenker, 2015. "The labour supply of women in STEM," IZA Journal of European Labor Studies, Springer;Forschungsinstitut zur Zukunft der Arbeit GmbH (IZA), vol. 4(1), pages 1-17, December.
    22. Jinyong Hahn & Whitney Newey, 2004. "Jackknife and Analytical Bias Reduction for Nonlinear Panel Models," Econometrica, Econometric Society, vol. 72(4), pages 1295-1319, July.
    23. Gustaf Bruze, 2011. "Marriage Choices of Movie Stars: Does Spouse's Education Matter?," Journal of Human Capital, University of Chicago Press, vol. 5(1), pages 1-28.
    24. Gary Chamberlain, 1980. "Analysis of Covariance with Qualitative Data," Review of Economic Studies, Oxford University Press, vol. 47(1), pages 225-238.
    25. Joseph G. Altonji & Rosa L. Matzkin, 2005. "Cross Section and Panel Data Estimators for Nonseparable Models with Endogenous Regressors," Econometrica, Econometric Society, vol. 73(4), pages 1053-1102, July.
    26. Hanushek, Eric, 1971. "Teacher Characteristics and Gains in Student Achievement: Estimation Using Micro Data," American Economic Review, American Economic Association, vol. 61(2), pages 280-288, May.
    27. Jeffrey M Wooldridge, 2010. "Econometric Analysis of Cross Section and Panel Data," MIT Press Books, The MIT Press, edition 2, volume 1, number 0262232588, September.
    28. Manski, Charles F., 1975. "Maximum score estimation of the stochastic utility model of choice," Journal of Econometrics, Elsevier, vol. 3(3), pages 205-228, August.
    29. Vuong, Quang H, 1989. "Likelihood Ratio Tests for Model Selection and Non-nested Hypotheses," Econometrica, Econometric Society, vol. 57(2), pages 307-333, March.
    30. Hajivassiliou, Vassilis & McFadden, Daniel & Ruud, Paul, 1996. "Simulation of multivariate normal rectangle probabilities and their derivatives theoretical and computational results," Journal of Econometrics, Elsevier, vol. 72(1-2), pages 85-134.
    31. Martin Browning & Jesus Carro, 2006. "Heterogeneity and Microeconometrics Modelling," CAM Working Papers 2006-03, University of Copenhagen. Department of Economics. Centre for Applied Microeconometrics.
    32. Bryan S. Graham & James L. Powell, 2012. "Identification and Estimation of Average Partial Effects in “Irregular” Correlated Random Coefficient Panel Data Models," Econometrica, Econometric Society, vol. 80(5), pages 2105-2152, September.
    33. Stéphane Bonhomme, 2012. "Functional Differencing," Econometrica, Econometric Society, vol. 80(4), pages 1337-1385, July.
    34. Cambanis, Stamatis & Huang, Steel & Simons, Gordon, 1981. "On the theory of elliptically contoured distributions," Journal of Multivariate Analysis, Elsevier, vol. 11(3), pages 368-385, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Concetta Rondinelli & Roberta Zizza, 2020. "Spend today or spend tomorrow? The role of inflation expectations in consumer behaviour," Temi di discussione (Economic working papers) 1276, Bank of Italy, Economic Research and International Relations Area.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ghanem, Dalia, 2017. "Testing identifying assumptions in nonseparable panel data models," Journal of Econometrics, Elsevier, vol. 197(2), pages 202-217.
    2. Irene Botosaru & Chris Muris, 2017. "Binarization for panel models with fixed effects," CeMMAP working papers CWP31/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    3. Irene Botosaru & Chris Muris & Krishna Pendakur, 2020. "Identification of Time-Varying Transformation Models with Fixed Effects, with an Application to Unobserved Heterogeneity in Resource Shares," Papers 2008.05507, arXiv.org, revised Apr 2021.
    4. Chernozhukov, Victor & Fernández-Val, Iván & Hoderlein, Stefan & Holzmann, Hajo & Newey, Whitney, 2015. "Nonparametric identification in panels using quantiles," Journal of Econometrics, Elsevier, vol. 188(2), pages 378-392.
    5. Gao, Yichen & Li, Cong & Liang, Zhongwen, 2015. "Binary response correlated random coefficient panel data models," Journal of Econometrics, Elsevier, vol. 188(2), pages 421-434.
    6. Irene Botosaru & Chris Muris & Krishna Pendakur, 2020. "Intertemporal Collective Household Models: Identification in Short Panels with Unobserved Heterogeneity in Resource Shares," Department of Economics Working Papers 2020-09, McMaster University.
    7. Matzkin, Rosa L., 2012. "Identification in nonparametric limited dependent variable models with simultaneity and unobserved heterogeneity," Journal of Econometrics, Elsevier, vol. 166(1), pages 106-115.
    8. Geert Dhaene & Koen Jochmans, 2015. "Split-panel Jackknife Estimation of Fixed-effect Models," Review of Economic Studies, Oxford University Press, vol. 82(3), pages 991-1030.
    9. Dhaene, Geert & Sun, Yutao, 2021. "Second-order corrected likelihood for nonlinear panel models with fixed effects," Journal of Econometrics, Elsevier, vol. 220(2), pages 227-252.
    10. Fernández-Val, Iván & Vella, Francis, 2011. "Bias corrections for two-step fixed effects panel data estimators," Journal of Econometrics, Elsevier, vol. 163(2), pages 144-162, August.
    11. Andrew Adrian Yu Pua, 2015. "On IV estimation of a dynamic linear probability model with fixed effects," UvA-Econometrics Working Papers 15-01, Universiteit van Amsterdam, Dept. of Econometrics.
    12. Graham, Bryan S. & Hahn, Jinyong & Poirier, Alexandre & Powell, James L., 2018. "A quantile correlated random coefficients panel data model," Journal of Econometrics, Elsevier, vol. 206(2), pages 305-335.
    13. Dmitry Arkhangelsky & Guido Imbens, 2018. "The Role of the Propensity Score in Fixed Effect Models," Papers 1807.02099, arXiv.org, revised Apr 2019.
    14. Gayle, Wayne-Roy, 2013. "Identification and N-consistent estimation of a nonlinear panel data model with correlated unobserved effects," Journal of Econometrics, Elsevier, vol. 175(2), pages 71-83.
    15. Lechner, Michael & Lollivier, Stefan & Magnac, Thierry, 2005. "Parametric Binary Choice Models," IDEI Working Papers 398, Institut d'Économie Industrielle (IDEI), Toulouse.
    16. Chernozhukov, Victor & Fernández-Val, Iván & Newey, Whitney K., 2019. "Nonseparable multinomial choice models in cross-section and panel data," Journal of Econometrics, Elsevier, vol. 211(1), pages 104-116.
    17. Bryan S. Graham & James Powell, 2008. "Identification and Estimation of 'Irregular' Correlated Random Coefficient Models," NBER Working Papers 14469, National Bureau of Economic Research, Inc.
    18. Wooldridge, Jeffrey M., 2019. "Correlated random effects models with unbalanced panels," Journal of Econometrics, Elsevier, vol. 211(1), pages 137-150.
    19. Valentin Verdier, 2020. "Average treatment effects for stayers with correlated random coefficient models of panel data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(7), pages 917-939, November.
    20. Fernández-Val, Iván & Weidner, Martin, 2016. "Individual and time effects in nonlinear panel models with large N, T," Journal of Econometrics, Elsevier, vol. 192(1), pages 291-312.

    More about this item

    Keywords

    Copula; high-dimensional integration; nonlinear panel data.;
    All these keywords.

    JEL classification:

    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • C25 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions; Probabilities
    • J22 - Labor and Demographic Economics - - Demand and Supply of Labor - - - Time Allocation and Labor Supply

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bdi:wptemi:td_1092_16. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: https://edirc.repec.org/data/bdigvit.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.