IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1902.11017.html
   My bibliography  Save this paper

Integrability and Identification in Multinomial Choice Models

Author

Listed:
  • Debopam Bhattacharya

Abstract

McFadden's random-utility model of multinomial choice has long been the workhorse of applied research. We establish shape-restrictions under which multinomial choice-probability functions can be rationalized via random-utility models with nonparametric unobserved heterogeneity and general income-effects. When combined with an additional restriction, the above conditions are equivalent to the canonical Additive Random Utility Model. The sufficiency-proof is constructive, and facilitates nonparametric identification of preference-distributions without requiring identification-at-infinity type arguments. A corollary shows that Slutsky-symmetry, a key condition for previous rationalizability results, is equivalent to absence of income-effects. Our results imply theory-consistent nonparametric bounds for choice-probabilities on counterfactual budget-sets. They also apply to widely used random-coefficient models, upon conditioning on observable choice characteristics. The theory of partial differential equations plays a key role in our analysis.

Suggested Citation

  • Debopam Bhattacharya, 2019. "Integrability and Identification in Multinomial Choice Models," Papers 1902.11017, arXiv.org, revised May 2021.
  • Handle: RePEc:arx:papers:1902.11017
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1902.11017
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Chernozhukov, Victor & Fernández-Val, Iván & Newey, Whitney K., 2019. "Nonseparable multinomial choice models in cross-section and panel data," Journal of Econometrics, Elsevier, vol. 211(1), pages 104-116.
    2. Debopam Bhattacharya, 2021. "The Empirical Content of Binary Choice Models," Econometrica, Econometric Society, vol. 89(1), pages 457-474, January.
    3. Yuichi Kitamura & Jörg Stoye, 2018. "Nonparametric Analysis of Random Utility Models," Econometrica, Econometric Society, vol. 86(6), pages 1883-1909, November.
    4. Dette, Holger & Hoderlein, Stefan & Neumeyer, Natalie, 2016. "Testing multivariate economic restrictions using quantiles: The example of Slutsky negative semidefiniteness," Journal of Econometrics, Elsevier, vol. 191(1), pages 129-144.
    5. Amit Gandhi & Aviv Nevo, 2021. "Empirical Models of Demand and Supply in Differentiated Products Industries," NBER Working Papers 29257, National Bureau of Economic Research, Inc.
    6. Guido W. Imbens & Whitney K. Newey, 2009. "Identification and Estimation of Triangular Simultaneous Equations Models Without Additivity," Econometrica, Econometric Society, vol. 77(5), pages 1481-1512, September.
    7. Arthur Lewbel, 2001. "Demand Systems with and without Errors," American Economic Review, American Economic Association, vol. 91(3), pages 611-618, June.
    8. Ruud H. Koning & Geert Ridder, 2003. "Discrete choice and stochastic utility maximization," Econometrics Journal, Royal Economic Society, vol. 6(1), pages 1-27, June.
    9. Armstrong, Mark & Vickers, John, 2015. "Which demand systems can be generated by discrete choice?," Journal of Economic Theory, Elsevier, vol. 158(PA), pages 293-307.
    10. Richard W. Blundell & James L. Powell, 2004. "Endogeneity in Semiparametric Binary Response Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 71(3), pages 655-679.
    11. Jeremy T. Fox, 2021. "A Note on Nonparametric Identification of Distributions of Random Coefficients in Multinomial Choice Models," Annals of Economics and Statistics, GENES, issue 142, pages 305-310.
    12. Jerry A. Hausman & Whitney K. Newey, 2016. "Individual Heterogeneity and Average Welfare," Econometrica, Econometric Society, vol. 84, pages 1225-1248, May.
    13. Steven T. Berry & Philip A. Haile, 2021. "Foundations of Demand Estimation," NBER Working Papers 29305, National Bureau of Economic Research, Inc.
    14. Charles F. Manski, 2007. "Partial Identification Of Counterfactual Choice Probabilities," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 48(4), pages 1393-1410, November.
    15. Matzkin, Rosa L., 2007. "Nonparametric identification," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 73, Elsevier.
    16. Lewbel, Arthur, 2000. "Semiparametric qualitative response model estimation with unknown heteroscedasticity or instrumental variables," Journal of Econometrics, Elsevier, vol. 97(1), pages 145-177, July.
    17. Mas-Colell, Andreu & Whinston, Michael D. & Green, Jerry R., 1995. "Microeconomic Theory," OUP Catalogue, Oxford University Press, number 9780195102680, Decembrie.
    18. Molinari, Francesca, 2020. "Microeconometrics with partial identification," Handbook of Econometrics, in: Steven N. Durlauf & Lars Peter Hansen & James J. Heckman & Rosa L. Matzkin (ed.), Handbook of Econometrics, edition 1, volume 7, chapter 0, pages 355-486, Elsevier.
    19. Debopam Bhattacharya, 2018. "Empirical welfare analysis for discrete choice: Some general results," Quantitative Economics, Econometric Society, vol. 9(2), pages 571-615, July.
    20. Matzkin, Rosa L., 1993. "Nonparametric identification and estimation of polychotomous choice models," Journal of Econometrics, Elsevier, vol. 58(1-2), pages 137-168, July.
    21. Roy Allen & John Rehbeck, 2019. "Identification With Additively Separable Heterogeneity," Econometrica, Econometric Society, vol. 87(3), pages 1021-1054, May.
    22. Pietro Tebaldi & Alexander Torgovitsky & Hanbin Yang, 2023. "Nonparametric Estimates of Demand in the California Health Insurance Exchange," Econometrica, Econometric Society, vol. 91(1), pages 107-146, January.
    23. Daniel McFadden & Kenneth Train, 2000. "Mixed MNL models for discrete response," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(5), pages 447-470.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Debopam Bhattacharya, 2021. "The Empirical Content of Binary Choice Models," Econometrica, Econometric Society, vol. 89(1), pages 457-474, January.
    2. Sam Cosaert & Thomas Demuynck, 2018. "Nonparametric Welfare and Demand Analysis with Unobserved Individual Heterogeneity," The Review of Economics and Statistics, MIT Press, vol. 100(2), pages 349-361, May.
    3. Wang, Ao, 2023. "Sieve BLP: A semi-nonparametric model of demand for differentiated products," Journal of Econometrics, Elsevier, vol. 235(2), pages 325-351.
    4. Arthur Lewbel & Krishna Pendakur, 2017. "Unobserved Preference Heterogeneity in Demand Using Generalized Random Coefficients," Journal of Political Economy, University of Chicago Press, vol. 125(4), pages 1100-1148.
    5. Molinari, Francesca, 2020. "Microeconometrics with partial identification," Handbook of Econometrics, in: Steven N. Durlauf & Lars Peter Hansen & James J. Heckman & Rosa L. Matzkin (ed.), Handbook of Econometrics, edition 1, volume 7, chapter 0, pages 355-486, Elsevier.
    6. Victor Chernozhukov & Jerry A. Hausman & Whitney K. Newey, 2019. "Demand Analysis with Many Prices," NBER Working Papers 26424, National Bureau of Economic Research, Inc.
    7. Yuichi Kitamura & Jörg Stoye, 2018. "Nonparametric Analysis of Random Utility Models," Econometrica, Econometric Society, vol. 86(6), pages 1883-1909, November.
    8. Matzkin, Rosa L., 2012. "Identification in nonparametric limited dependent variable models with simultaneity and unobserved heterogeneity," Journal of Econometrics, Elsevier, vol. 166(1), pages 106-115.
    9. Maes, Sebastiaan & Malhotra, Raghav, 2024. "Robust Hicksian Welfare Analysis under Individual Heterogeneity," CRETA Online Discussion Paper Series 84, Centre for Research in Economic Theory and its Applications CRETA.
    10. Lee, Ying-Ying & Bhattacharya, Debopam, 2019. "Applied welfare analysis for discrete choice with interval-data on income," Journal of Econometrics, Elsevier, vol. 211(2), pages 361-387.
    11. Jiaying Gu & Thomas M. Russell, 2021. "Partial Identification in Nonseparable Binary Response Models with Endogenous Regressors," Papers 2101.01254, arXiv.org, revised Jul 2022.
    12. Francesca Molinari, 2019. "Econometrics with Partial Identification," CeMMAP working papers CWP25/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    13. Bhattacharya, D., 2018. "Income Effects and Rationalizability in Multinomial Choice Models," Cambridge Working Papers in Economics 1884, Faculty of Economics, University of Cambridge.
    14. Steven T. Berry & Philip A. Haile, 2024. "Nonparametric Identification of Differentiated Products Demand Using Micro Data," Econometrica, Econometric Society, vol. 92(4), pages 1135-1162, July.
    15. Yingying Dong & Arthur Lewbel, 2015. "A Simple Estimator for Binary Choice Models with Endogenous Regressors," Econometric Reviews, Taylor & Francis Journals, vol. 34(1-2), pages 82-105, February.
    16. Aradillas-Lopez, Andres, 2010. "Semiparametric estimation of a simultaneous game with incomplete information," Journal of Econometrics, Elsevier, vol. 157(2), pages 409-431, August.
    17. Cherchye, Laurens & Demuynck, Thomas & Rock, Bram De, 2019. "Bounding counterfactual demand with unobserved heterogeneity and endogenous expenditures," Journal of Econometrics, Elsevier, vol. 211(2), pages 483-506.
    18. Newey, Whitney & Stouli, Sami, 2021. "Control variables, discrete instruments, and identification of structural functions," Journal of Econometrics, Elsevier, vol. 222(1), pages 73-88.
    19. Bart Capéau & Liebrecht De Sadeleer & Sebastiaan Maes & André Decoster, 2020. "Nonparametric welfare analysis for discrete choice: levels and differences of individual and social welfare," Working Papers of Department of Economics, Leuven 674666, KU Leuven, Faculty of Economics and Business (FEB), Department of Economics, Leuven.
    20. Charles Gauthier & Sebastiaan Maes & Raghav Malhotra, 2023. "Consumer Welfare under Individual Heterogeneity," Papers 2303.01231, arXiv.org, revised Jun 2025.

    More about this item

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C25 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions; Probabilities
    • D11 - Microeconomics - - Household Behavior - - - Consumer Economics: Theory

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1902.11017. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.