IDEAS home Printed from https://ideas.repec.org/a/adr/anecst/y2021i142p305-310.html
   My bibliography  Save this article

A Note on Nonparametric Identification of Distributions of Random Coefficients in Multinomial Choice Models

Author

Listed:
  • Jeremy T. Fox

Abstract

I prove the point identfication of the joint distribution of the vector of random coefficients and additive, good-specific errors in a multinomial choice model. The identification theorem extends the binary choice results of Ichimura and Thompson (1998) as well as Gautier and Kitamura (2013) from two to two or more choices.

Suggested Citation

  • Jeremy T. Fox, 2021. "A Note on Nonparametric Identification of Distributions of Random Coefficients in Multinomial Choice Models," Annals of Economics and Statistics, GENES, issue 142, pages 305-310.
  • Handle: RePEc:adr:anecst:y:2021:i:142:p:305-310
    DOI: https://doi.org/10.15609/annaeconstat2009.142.0305
    as

    Download full text from publisher

    File URL: https://www.jstor.org/stable/10.15609/annaeconstat2009.142.0305
    Download Restriction: no

    File URL: https://libkey.io/https://doi.org/10.15609/annaeconstat2009.142.0305?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Steven T. Berry & Philip A. Haile, 2009. "Nonparametric Identification of Multinomial Choice Demand Models with Heterogeneous Consumers," Cowles Foundation Discussion Papers 1718, Cowles Foundation for Research in Economics, Yale University, revised Mar 2010.
    2. Jeremy T. Fox & Amit Gandhi, 2016. "Nonparametric identification and estimation of random coefficients in multinomial choice models," RAND Journal of Economics, RAND Corporation, vol. 47(1), pages 118-139, February.
    3. Fox, Jeremy T. & Kim, Kyoo il & Ryan, Stephen P. & Bajari, Patrick, 2012. "The random coefficients logit model is identified," Journal of Econometrics, Elsevier, vol. 166(2), pages 204-212.
    4. Matthew A Masten, 2018. "Random Coefficients on Endogenous Variables in Simultaneous Equations Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 85(2), pages 1193-1250.
    5. Eric Gautier & Yuichi Kitamura, 2013. "Nonparametric Estimation in Random Coefficients Binary Choice Models," Econometrica, Econometric Society, vol. 81(2), pages 581-607, March.
    6. Lewbel, Arthur, 2000. "Semiparametric qualitative response model estimation with unknown heteroscedasticity or instrumental variables," Journal of Econometrics, Elsevier, vol. 97(1), pages 145-177, July.
    7. Ichimura, Hidehiko & Thompson, T. Scott, 1998. "Maximum likelihood estimation of a binary choice model with random coefficients of unknown distribution," Journal of Econometrics, Elsevier, vol. 86(2), pages 269-295, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Roy Allen & John Rehbeck, 2020. "Identification of Random Coefficient Latent Utility Models," Papers 2003.00276, arXiv.org.
    2. Roy Allen & John Rehbeck, 2023. "Obstacles to redistribution through markets and one solution," Economic Theory Bulletin, Springer;Society for the Advancement of Economic Theory (SAET), vol. 11(2), pages 235-242, October.
    3. Christophe Gaillac & Eric Gautier, 2021. "Nonparametric classes for identification in random coefficients models when regressors have limited variation," Working Papers hal-03231392, HAL.
    4. Wang, Ao, 2023. "Sieve BLP: A semi-nonparametric model of demand for differentiated products," Journal of Econometrics, Elsevier, vol. 235(2), pages 325-351.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roy Allen & John Rehbeck, 2020. "Identification of Random Coefficient Latent Utility Models," Papers 2003.00276, arXiv.org.
    2. Arthur Lewbel & Krishna Pendakur, 2017. "Unobserved Preference Heterogeneity in Demand Using Generalized Random Coefficients," Journal of Political Economy, University of Chicago Press, vol. 125(4), pages 1100-1148.
    3. Matzkin, Rosa L., 2019. "Constructive identification in some nonseparable discrete choice models," Journal of Econometrics, Elsevier, vol. 211(1), pages 83-103.
    4. Dunker, Fabian & Hoderlein, Stefan & Kaido, Hiroaki & Sherman, Robert, 2018. "Nonparametric identification of the distribution of random coefficients in binary response static games of complete information," Journal of Econometrics, Elsevier, vol. 206(1), pages 83-102.
    5. Nail Kashaev, 2018. "Identification and estimation of multinomial choice models with latent special covariates," Papers 1811.05555, arXiv.org, revised Mar 2022.
    6. Jackson Bunting, 2022. "Continuous permanent unobserved heterogeneity in dynamic discrete choice models," Papers 2202.03960, arXiv.org, revised Feb 2024.
    7. Wang, Ao, 2023. "Sieve BLP: A semi-nonparametric model of demand for differentiated products," Journal of Econometrics, Elsevier, vol. 235(2), pages 325-351.
    8. Matzkin, Rosa L., 2012. "Identification in nonparametric limited dependent variable models with simultaneity and unobserved heterogeneity," Journal of Econometrics, Elsevier, vol. 166(1), pages 106-115.
    9. Wang, Ao, 2020. "Identifying the Distribution of Random Coefficients in BLP Demand Models Using One Single Variation in Product Characteristics," The Warwick Economics Research Paper Series (TWERPS) 1304, University of Warwick, Department of Economics.
    10. repec:oup:emjrnl:v:26:y:2023:i:2:p:279-306. is not listed on IDEAS
    11. Steven T. Berry & Philip A. Haile, 2014. "Identification in Differentiated Products Markets Using Market Level Data," Econometrica, Econometric Society, vol. 82(5), pages 1749-1797, September.
    12. Andrew Chesher & Adam M. Rosen, 2014. "An instrumental variable random‐coefficients model for binary outcomes," Econometrics Journal, Royal Economic Society, vol. 17(2), pages 1-19, June.
    13. Juan Carlos Escanciano, 2020. "Irregular Identification of Structural Models with Nonparametric Unobserved Heterogeneity," Papers 2005.08611, arXiv.org.
    14. Christophe Gaillac & Eric Gautier, 2021. "Nonparametric classes for identification in random coefficients models when regressors have limited variation," Working Papers hal-03231392, HAL.
    15. Christoph Breunig & Stefan Hoderlein, 2016. "Nonparametric Specification Testing in Random Parameter Models," Boston College Working Papers in Economics 897, Boston College Department of Economics.
    16. Christoph Breunig & Stefan Hoderlein, 2018. "Specification testing in random coefficient models," Quantitative Economics, Econometric Society, vol. 9(3), pages 1371-1417, November.
    17. Fabian Dunker & Konstantin Eckle & Katharina Proksch & Johannes Schmidt-Hieber, 2017. "Tests for qualitative features in the random coefficients model," Courant Research Centre: Poverty, Equity and Growth - Discussion Papers 225, Courant Research Centre PEG.
    18. Steven T. Berry & Philip A. Haile, 2009. "Identification of a Heterogeneous Generalized Regression Model with Group Effects," Cowles Foundation Discussion Papers 1732, Cowles Foundation for Research in Economics, Yale University.
    19. Fabian Dunker & Stefan Hoderlein & Hiroaki Kaido, 2013. "Random coefficients in static games of complete information," CeMMAP working papers CWP12/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    20. Fox, Jeremy T. & Kim, Kyoo il & Ryan, Stephen P. & Bajari, Patrick, 2012. "The random coefficients logit model is identified," Journal of Econometrics, Elsevier, vol. 166(2), pages 204-212.
    21. Arthur Lewbel, 2019. "The Identification Zoo: Meanings of Identification in Econometrics," Journal of Economic Literature, American Economic Association, vol. 57(4), pages 835-903, December.

    More about this item

    Keywords

    Discrete Choice; Multinomial Choice; Random Coefficients; Demand.;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C25 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions; Probabilities
    • C35 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:adr:anecst:y:2021:i:142:p:305-310. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Secretariat General or Laurent Linnemer (email available below). General contact details of provider: https://edirc.repec.org/data/ensaefr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.