IDEAS home Printed from
   My bibliography  Save this paper

Maximum Likelihood Estimation of Censored Stochastic Frontier Models: An Application to the Three-Stage DEA Method



This paper takes issues with the appropriateness of applying the stochastic frontier analysis (SFA) technique to account for environmental effects and statistical noise in the popular three-stage data envelopment analysis (DEA). A correctly specified SFA model with a censored dependent variable and the associated maximum likelihood estimation (MLE) are proposed. The simulations show that the finite sample performance of the proposed MLE of the censored SFA model is very promising. An empirical example of farmers’ credit unions in Taiwan illustrates the comparison between the censored and standard SFA in accounting for environmental effects and statistical noise.

Suggested Citation

  • Wen-Jen Tsay & Cliff J. Huang & Tsu-Tan Fu & I-Lin Ho, 2009. "Maximum Likelihood Estimation of Censored Stochastic Frontier Models: An Application to the Three-Stage DEA Method," IEAS Working Paper : academic research 09-A003, Institute of Economics, Academia Sinica, Taipei, Taiwan.
  • Handle: RePEc:sin:wpaper:09-a003

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. H. Fried & C. Lovell & S. Schmidt & S. Yaisawarng, 2002. "Accounting for Environmental Effects and Statistical Noise in Data Envelopment Analysis," Journal of Productivity Analysis, Springer, vol. 17(1), pages 157-174, January.
    2. Jondrow, James & Knox Lovell, C. A. & Materov, Ivan S. & Schmidt, Peter, 1982. "On the estimation of technical inefficiency in the stochastic frontier production function model," Journal of Econometrics, Elsevier, vol. 19(2-3), pages 233-238, August.
    3. Olson, Jerome A. & Schmidt, Peter & Waldman, Donald M., 1980. "A Monte Carlo study of estimators of stochastic frontier production functions," Journal of Econometrics, Elsevier, vol. 13(1), pages 67-82, May.
    4. Liu, Junming & Tone, Kaoru, 2008. "A multistage method to measure efficiency and its application to Japanese banking industry," Socio-Economic Planning Sciences, Elsevier, vol. 42(2), pages 75-91, June.
    5. Beniamina Margari & Fabrizio Erbetta & Carmelo Petraglia & Massimiliano Piacenza, 2007. "Regulatory and environmental effects on public transit efficiency: a mixed DEA-SFA approach," Journal of Regulatory Economics, Springer, vol. 32(2), pages 131-151, October.
    6. Jose Manuel Cordero-Ferrera & Francisco Pedraja-Chaparro & Javier Salinas-Jimenez, 2008. "Measuring efficiency in education: an analysis of different approaches for incorporating non-discretionary inputs," Applied Economics, Taylor & Francis Journals, vol. 40(10), pages 1323-1339.
    7. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    8. Leigh M. Drake & Richard Simper, 2005. "The Measurement Of Police Force Efficiency: An Assessment Of U.K. Home Office Policy," Contemporary Economic Policy, Western Economic Association International, vol. 23(4), pages 465-482, October.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Christine Amsler & Artem Prokhorov & Peter Schmidt, 2014. "Using Copulas to Model Time Dependence in Stochastic Frontier Models," Econometric Reviews, Taylor & Francis Journals, vol. 33(5-6), pages 497-522, August.

    More about this item


    Three-stage data envelopment analysis; stochastic frontier analysis; censored stochastic frontier model;

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sin:wpaper:09-a003. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (HsiaoyunLiu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.