IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

Maximum Likelihood Estimation of Censored Stochastic Frontier Models: An Application to the Three-Stage DEA Method

This paper takes issues with the appropriateness of applying the stochastic frontier analysis (SFA) technique to account for environmental effects and statistical noise in the popular three-stage data envelopment analysis (DEA). A correctly specified SFA model with a censored dependent variable and the associated maximum likelihood estimation (MLE) are proposed. The simulations show that the finite sample performance of the proposed MLE of the censored SFA model is very promising. An empirical example of farmers’ credit unions in Taiwan illustrates the comparison between the censored and standard SFA in accounting for environmental effects and statistical noise.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Our checks indicate that this address may not be valid because: 400 Bad Request. If this is indeed the case, please notify (HsiaoyunLiu)

Download Restriction: no

Paper provided by Institute of Economics, Academia Sinica, Taipei, Taiwan in its series IEAS Working Paper : academic research with number 09-A003.

in new window

Length: 27 pages
Date of creation: Mar 2009
Date of revision:
Handle: RePEc:sin:wpaper:09-a003
Contact details of provider: Phone: 886-2-27822791
Fax: 886-2-27853946
Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
  2. H. Fried & C. Lovell & S. Schmidt & S. Yaisawarng, 2002. "Accounting for Environmental Effects and Statistical Noise in Data Envelopment Analysis," Journal of Productivity Analysis, Springer, vol. 17(1), pages 157-174, January.
  3. Olson, Jerome A. & Schmidt, Peter & Waldman, Donald M., 1980. "A Monte Carlo study of estimators of stochastic frontier production functions," Journal of Econometrics, Elsevier, vol. 13(1), pages 67-82, May.
  4. Beniamina Buzzo Margari & Fabrizio Erbetta & Carmelo Petraglia & Massimiliano Piacenza, 2006. "Regulatory and Environmental Effects on Public Transit Efficiency. A Mixed DEA-SFA Approach," CERIS Working Paper 200613, Institute for Economic Research on Firms and Growth - Moncalieri (TO).
  5. Jose Manuel Cordero-Ferrera & Francisco Pedraja-Chaparro & Javier Salinas-Jimenez, 2008. "Measuring efficiency in education: an analysis of different approaches for incorporating non-discretionary inputs," Applied Economics, Taylor & Francis Journals, vol. 40(10), pages 1323-1339.
  6. Jondrow, James & Knox Lovell, C. A. & Materov, Ivan S. & Schmidt, Peter, 1982. "On the estimation of technical inefficiency in the stochastic frontier production function model," Journal of Econometrics, Elsevier, vol. 19(2-3), pages 233-238, August.
  7. Leigh M. Drake & Richard Simper, 2005. "The Measurement Of Police Force Efficiency: An Assessment Of U.K. Home Office Policy," Contemporary Economic Policy, Western Economic Association International, vol. 23(4), pages 465-482, October.
  8. Liu, Junming & Tone, Kaoru, 2008. "A multistage method to measure efficiency and its application to Japanese banking industry," Socio-Economic Planning Sciences, Elsevier, vol. 42(2), pages 75-91, June.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:sin:wpaper:09-a003. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (HsiaoyunLiu)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.