IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

A multistage method to measure efficiency and its application to Japanese banking industry

  • Liu, Junming
  • Tone, Kaoru
Registered author(s):

    When measuring technical efficiency with existing data envelopment analysis (DEA) techniques, mean efficiency scores generally exhibit volatile patterns over time. This appears to be at odds with the general perception of learning-by-doing management, due to Arrow [The economic implications of learning by doing. Review of Economic Studies 1964; 154-73]. Further, this phenomenon is largely attributable to the fundamental assumption of deterministic data maintained in DEA models, and to the difficulty such models have in incorporating environmental influences. This paper proposes a three-stage method to measure DEA efficiency while controlling for the impacts of both statistical noise and environmental factors. Using panel data on Japanese banking over the period 1997-2001, we demonstrate that the proposed approach greatly mitigates these weaknesses of DEA models. We find a stable upward trend in mean measured efficiency, indicating that, on average, the bankers were learning over the sample period. Therefore, we conclude that this new method is a significant improvement relative to those DEA models currently used by researchers, corporate management, and industrial regulatory bodies to evaluate performance of their respective interests.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://www.sciencedirect.com/science/article/B6V6Y-4KMYG1C-2/1/9716c4d714ae177ac2a41a6b1e3793e0
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Socio-Economic Planning Sciences.

    Volume (Year): 42 (2008)
    Issue (Month): 2 (June)
    Pages: 75-91

    as
    in new window

    Handle: RePEc:eee:soceps:v:42:y:2008:i:2:p:75-91
    Contact details of provider: Web page: http://www.elsevier.com/locate/seps

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. קטרינה בודובסקי וטלל דולב, 2002. "הזמנה לדו שיח," Working Papers 182, National Insurance Institute of Israel.
    2. דר הלנה סינה דה סביליה, 2002. "בית חם לצעירים," Working Papers 125, National Insurance Institute of Israel.
    3. Berger, Allen N. & Humphrey, David B., 1997. "Efficiency of financial institutions: International survey and directions for future research," European Journal of Operational Research, Elsevier, vol. 98(2), pages 175-212, April.
    4. Fukuyama, Hirofumi & Weber, William L., 2002. "Estimating output allocative efficiency and productivity change: Application to Japanese banks," European Journal of Operational Research, Elsevier, vol. 137(1), pages 177-190, February.
    5. Berger, Allen N. & Mester, Loretta J., 2003. "Explaining the dramatic changes in performance of US banks: technological change, deregulation, and dynamic changes in competition," Journal of Financial Intermediation, Elsevier, vol. 12(1), pages 57-95, January.
    6. Graciela L. Kaminsky & Carmen M. Reinhart, 1996. "The twin crises: the causes of banking and balance-of-payments problems," International Finance Discussion Papers 544, Board of Governors of the Federal Reserve System (U.S.).
    7. Brockett, P. L. & Charnes, A. & Cooper, W. W. & Huang, Z. M. & Sun, D. B., 1997. "Data transformations in DEA cone ratio envelopment approaches for monitoring bank performances," European Journal of Operational Research, Elsevier, vol. 98(2), pages 250-268, April.
    8. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    9. Tone, Kaoru, 2002. "A slacks-based measure of super-efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 143(1), pages 32-41, November.
    10. H. Fried & C. Lovell & S. Schmidt & S. Yaisawarng, 2002. "Accounting for Environmental Effects and Statistical Noise in Data Envelopment Analysis," Journal of Productivity Analysis, Springer, vol. 17(1), pages 157-174, January.
    11. Per Andersen & Niels Christian Petersen, 1993. "A Procedure for Ranking Efficient Units in Data Envelopment Analysis," Management Science, INFORMS, vol. 39(10), pages 1261-1264, October.
    12. Caudill, Steven B & Ford, Jon M & Gropper, Daniel M, 1995. "Frontier Estimation and Firm-Specific Inefficiency Measures in the Presence of Heteroscedasticity," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(1), pages 105-11, January.
    13. Battese, G E & Coelli, T J, 1995. "A Model for Technical Inefficiency Effects in a Stochastic Frontier Production Function for Panel Data," Empirical Economics, Springer, vol. 20(2), pages 325-32.
    14. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    15. Tone, Kaoru, 2001. "A slacks-based measure of efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 130(3), pages 498-509, May.
    16. Timmer, C P, 1971. "Using a Probabilistic Frontier Production Function to Measure Technical Efficiency," Journal of Political Economy, University of Chicago Press, vol. 79(4), pages 776-94, July-Aug..
    17. Xavier Freixas & Jean-Charles Rochet, 1997. "Microeconomics of Banking," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262061937, June.
    18. Altunbas, Yener & Liu, Ming-Hau & Molyneux, Philip & Seth, Rama, 2000. "Efficiency and risk in Japanese banking," Journal of Banking & Finance, Elsevier, vol. 24(10), pages 1605-1628, October.
    19. Drake, Leigh & Hall, Maximilian J. B., 2003. "Efficiency in Japanese banking: An empirical analysis," Journal of Banking & Finance, Elsevier, vol. 27(5), pages 891-917, May.
    20. אסתר טולידנו, 2002. "מקבלי דמי אבטלה בשנת 2001," Working Papers 468, National Insurance Institute of Israel.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:soceps:v:42:y:2008:i:2:p:75-91. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.