IDEAS home Printed from https://ideas.repec.org/p/han/dpaper/dp-503.html
   My bibliography  Save this paper

Analyzing the Composition of the Female Workforce - A Semiparametric Copula Approach

Author

Listed:
  • Schwiebert, Jörg

Abstract

We provide a semiparametric copula approach for estimating a "classical" sample selection model. We impose that the joint distribution function of unobservables can be characterized by a specifc copula, but the marginal distribution functions are estimated semiparametrically. In contrast to existing semiparametric estimators for sample selection models, our approach provides a measure of dependence between unobservables in main and selection equation which can be used to analyze the composition of, say, the female workforce. We apply our estimation procedure to a female labor supply data set and show that those women with the best skills participate in the labor market; moreover, we find evidence for the existence of an ability threshold which involves that women with high ability are to some extent advantaged and, therefore, have also obtained the best skills.

Suggested Citation

  • Schwiebert, Jörg, 2012. "Analyzing the Composition of the Female Workforce - A Semiparametric Copula Approach," Hannover Economic Papers (HEP) dp-503, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
  • Handle: RePEc:han:dpaper:dp-503
    as

    Download full text from publisher

    File URL: http://diskussionspapiere.wiwi.uni-hannover.de/pdf_bib/dp-503.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. repec:sae:ecolab:v:16:y:2006:i:2:p:1-2 is not listed on IDEAS
    2. Chen, Xiaohong & Fan, Yanqin & Tsyrennikov, Viktor, 2006. "Efficient Estimation of Semiparametric Multivariate Copula Models," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1228-1240, September.
    3. Ahn, Hyungtaik & Powell, James L., 1993. "Semiparametric estimation of censored selection models with a nonparametric selection mechanism," Journal of Econometrics, Elsevier, vol. 58(1-2), pages 3-29, July.
    4. Lee, Lung-Fei, 1983. "Generalized Econometric Models with Selectivity," Econometrica, Econometric Society, vol. 51(2), pages 507-512, March.
    5. Murray D. Smith, 2003. "Modelling sample selection using Archimedean copulas," Econometrics Journal, Royal Economic Society, vol. 6(1), pages 99-123, June.
    6. Trivedi, Pravin K. & Zimmer, David M., 2007. "Copula Modeling: An Introduction for Practitioners," Foundations and Trends(R) in Econometrics, now publishers, vol. 1(1), pages 1-111, April.
    7. Coppejans, Mark & Gallant, A. Ronald, 2002. "Cross-validated SNP density estimates," Journal of Econometrics, Elsevier, vol. 110(1), pages 27-65, September.
    8. Nikolay Nenovsky & S. Statev, 2006. "Introduction," Post-Print halshs-00260898, HAL.
    9. Whitney K. Newey, 2009. "Two-step series estimation of sample selection models," Econometrics Journal, Royal Economic Society, vol. 12(s1), pages 217-229, January.
    10. Francis Vella, 1998. "Estimating Models with Sample Selection Bias: A Survey," Journal of Human Resources, University of Wisconsin Press, vol. 33(1), pages 127-169.
    11. Gallant, A Ronald & Nychka, Douglas W, 1987. "Semi-nonparametric Maximum Likelihood Estimation," Econometrica, Econometric Society, vol. 55(2), pages 363-390, March.
    12. Margarita Genius & Elisabetta Strazzera, 2008. "Applying the copula approach to sample selection modelling," Applied Economics, Taylor & Francis Journals, vol. 40(11), pages 1443-1455.
    13. Mitali Das & Whitney K. Newey & Francis Vella, 2003. "Nonparametric Estimation of Sample Selection Models," Review of Economic Studies, Oxford University Press, vol. 70(1), pages 33-58.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Sample selection model; semiparametric estimation; copula approach; composition of the female workforce; female labor force participation;

    JEL classification:

    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C24 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Truncated and Censored Models; Switching Regression Models; Threshold Regression Models
    • J21 - Labor and Demographic Economics - - Demand and Supply of Labor - - - Labor Force and Employment, Size, and Structure
    • J31 - Labor and Demographic Economics - - Wages, Compensation, and Labor Costs - - - Wage Level and Structure; Wage Differentials

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:han:dpaper:dp-503. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Heidrich, Christian). General contact details of provider: http://edirc.repec.org/data/fwhande.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.