IDEAS home Printed from https://ideas.repec.org/p/upj/weupjo/15-218.html
   My bibliography  Save this paper

Inference on Causal Effects in a Generalized Regression Kink Design

Author

Listed:
  • David Card

    (University of California, Berkeley)

  • David S. Lee

    (Princeton University)

  • Zhuan Pei

    (Brandeis University)

  • Andrea Weber

    (University of Mannheim)

Abstract

We consider nonparametric identification and estimation in a nonseparable model where a continuous regressor of interest is a known, deterministic, but kinked function of an observed assignment variable. This design arises in many institutional settings where a policy variable (such as weekly unemployment benefits) is determined by an observed but potentially endogenous assignment variable (like previous earnings). We provide new results on identification and estimation for these settings, and apply our results to obtain estimates of the elasticity of joblessness with respect to UI benefit rates. We characterize a broad class of models in which a sharp "Regression Kink Design" (RKD, or RK Design) identifies a readily interpretable treatment-on-the-treated parameter (Florens et al. (2008)). We also introduce a "fuzzy regression kink design" generalization that allows for omitted variables in the assignment rule, noncompliance, and certain types of measurement errors in the observed values of the assignment variable and the policy variable. Our identifying assumptions give rise to testable restrictions on the distributions of the assignment variable and predetermined covariates around the kink point, similar to the restrictions delivered by Lee (2008) for the regression discontinuity design. We then use a fuzzy RKD approach to study the effect of unemployment insurance benefits on the duration of joblessness in Austria, where the benefit schedule has kinks at the minimum and maximum benefit level. Our preferred estimates suggest that changes in UI benefit generosity exert a relatively large effect on the duration of joblessness of both low-wage and high-wage UI recipients in Austria.

Suggested Citation

  • David Card & David S. Lee & Zhuan Pei & Andrea Weber, 2015. "Inference on Causal Effects in a Generalized Regression Kink Design," Upjohn Working Papers and Journal Articles 15-218, W.E. Upjohn Institute for Employment Research.
  • Handle: RePEc:upj:weupjo:15-218
    as

    Download full text from publisher

    File URL: http://research.upjohn.org/cgi/viewcontent.cgi?article=1235&context=up_workingpapers
    Download Restriction: This material is copyrighted. Permission is required to reproduce any or all parts.
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Rafael Lalive & Jan Van Ours & Josef Zweimuller, 2006. "How Changes in Financial Incentives Affect the Duration of Unemployment," Review of Economic Studies, Oxford University Press, vol. 73(4), pages 1009-1038.
    2. Emilia Del Bono & Andrea Weber, 2008. "Do Wages Compensate for Anticipated Working Time Restrictions? Evidence from Seasonal Employment in Austria," Journal of Labor Economics, University of Chicago Press, vol. 26(1), pages 181-221.
    3. David E. Card & David S. Lee & Zhuan Pei & Andrea Weber, 2012. "Nonlinear Policy Rules and the Identification and Estimation of Causal Effects in a Generalized Regression Kink Design," NRN working papers 2012-14, The Austrian Center for Labor Economics and the Analysis of the Welfare State, Johannes Kepler University Linz, Austria.
    4. Michihito Ando, 2017. "How much should we trust regression-kink-design estimates?," Empirical Economics, Springer, vol. 53(3), pages 1287-1322, November.
    5. Joseph G. Altonji & Rosa L. Matzkin, 2005. "Cross Section and Panel Data Estimators for Nonseparable Models with Endogenous Regressors," Econometrica, Econometric Society, vol. 73(4), pages 1053-1102, July.
    6. Bent Jesper Christensen & Rasmus Lentz & Dale T. Mortensen & George R. Neumann & Axel Werwatz, 2005. "On-the-Job Search and the Wage Distribution," Journal of Labor Economics, University of Chicago Press, vol. 23(1), pages 31-58, January.
    7. Dahlberg, Matz & Mörk, Eva & Rattsø, Jørn & Ågren, Hanna, 2008. "Using a discontinuous grant rule to identify the effect of grants on local taxes and spending," Journal of Public Economics, Elsevier, vol. 92(12), pages 2320-2335, December.
    8. Ganong, Peter & Jäger, Simon, 2014. "A Permutation Test and Estimation Alternatives for the Regression Kink Design," IZA Discussion Papers 8282, Institute of Labor Economics (IZA).
    9. David Card & Zhuan Pei & David S. Lee & Andrea Weber, 2014. "Local Polynomial Order in Regression Discontinuity Designs," Working Papers 81, Brandeis University, Department of Economics and International Businesss School.
    10. Peter Ganong & Simon Jäger, 2018. "A Permutation Test for the Regression Kink Design," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(522), pages 494-504, April.
    11. Arie Kapteyn & Jelmer Y. Ypma, 2007. "Measurement Error and Misclassification: A Comparison of Survey and Administrative Data," Journal of Labor Economics, University of Chicago Press, vol. 25, pages 513-551.
    12. Edward Vytlacil, 2002. "Independence, Monotonicity, and Latent Index Models: An Equivalence Result," Econometrica, Econometric Society, vol. 70(1), pages 331-341, January.
    13. repec:hrv:faseco:34222894 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michihito Ando, 2017. "How much should we trust regression-kink-design estimates?," Empirical Economics, Springer, vol. 53(3), pages 1287-1322, November.
    2. David Card & David S. Lee & Zhuan Pei & Andrea Weber, 2017. "Regression Kink Design: Theory and Practice," Advances in Econometrics, in: Matias D. Cattaneo & Juan Carlos Escanciano (ed.), Regression Discontinuity Designs, volume 38, pages 341-382, Emerald Publishing Ltd.
    3. George B. Bulman & Caroline M. Hoxby, 2015. "The Returns to the Federal Tax Credits for Higher Education," Tax Policy and the Economy, University of Chicago Press, vol. 29(1), pages 13-88.
    4. David Card & Andrew Johnston & Pauline Leung & Alexandre Mas & Zhuan Pei, 2015. "The Effect of Unemployment Benefits on the Duration of Unemployment Insurance Receipt: New Evidence from a Regression Kink Design in Missouri, 2003-2013," American Economic Review, American Economic Association, vol. 105(5), pages 126-130, May.
    5. Böckerman, Petri & Kanninen, Ohto & Suoniemi, Ilpo, 2014. "A Kink that Makes You Sick: the Effect of Sick Pay on Absence in a Social Insurance System," MPRA Paper 61010, University Library of Munich, Germany.
    6. Tomi Kyyrä & Hanna Pesola, 2020. "The Effects of UI Benefits on Unemployment and Subsequent Outcomes: Evidence from a Kinked Benefit Rule," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 82(5), pages 1135-1160, October.
    7. Böheim, Renè & Horvath, Gerard Thomas & Winter-Ebmer, Rudolf, 2011. "Great expectations: Past wages and unemployment durations," Labour Economics, Elsevier, vol. 18(6), pages 778-785.
    8. Halbert White & Karim Chalak, 2013. "Identification and Identification Failure for Treatment Effects Using Structural Systems," Econometric Reviews, Taylor & Francis Journals, vol. 32(3), pages 273-317, November.
    9. Camille Landais, 2015. "Assessing the Welfare Effects of Unemployment Benefits Using the Regression Kink Design," American Economic Journal: Economic Policy, American Economic Association, vol. 7(4), pages 243-278, November.
    10. S. Nuray Akin & Brennan Platt, 2012. "Running Out of Time: Limited Unemployment Benefits and Reservation Wages," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 15(2), pages 149-170, April.
    11. Kyyrä, Tomi & Paukkeri, Tuuli, 2018. "Does experience rating reduce sickness and disability claims? Evidence from policy kinks," Journal of Health Economics, Elsevier, vol. 61(C), pages 178-192.
    12. Zhuan Pei & David Card & David S. Lee & Andrea Weber, 2012. "Nonlinear Policy Rules and the Identification and Estimation of Causal Effects in a Generalized Regression Kink Design," Working Papers 60, Brandeis University, Department of Economics and International Businesss School.
    13. Meghir, Costas & Rivkin, Steven, 2011. "Econometric Methods for Research in Education," Handbook of the Economics of Education, in: Erik Hanushek & Stephen Machin & Ludger Woessmann (ed.), Handbook of the Economics of Education, edition 1, volume 3, chapter 1, pages 1-87, Elsevier.
    14. David Card & Raj Chetty & Andrea Weber, 2007. "The Spike at Benefit Exhaustion: Leaving the Unemployment System or Starting a New Job?," American Economic Review, American Economic Association, vol. 97(2), pages 113-118, May.
    15. Jiang, Wei & Lu, Yi & Xie, Huihua, 2020. "Education and mental health: Evidence and mechanisms," Journal of Economic Behavior & Organization, Elsevier, vol. 180(C), pages 407-437.
    16. Christofzik, Désirée I. & Schneider, Benny, 2019. "Fiscal policy adjustments to budget shocks: Evidence from German municipalities," Working Papers 10/2019, German Council of Economic Experts / Sachverständigenrat zur Begutachtung der gesamtwirtschaftlichen Entwicklung.
    17. Elisa Guglielminetti & Rafael Lalive & Philippe Ruh & Etienne Wasmer, 2015. "Spatial search strategies of job seekers and the role of unemployment insurance," Sciences Po publications info:hdl:2441/4n249fe9fu9, Sciences Po.
    18. Ganong, Peter & Jäger, Simon, 2014. "A Permutation Test and Estimation Alternatives for the Regression Kink Design," IZA Discussion Papers 8282, Institute of Labor Economics (IZA).
    19. Alexander Gelber & Timothy J. Moore & Alexander Strand, 2017. "The Effect of Disability Insurance Payments on Beneficiaries' Earnings," American Economic Journal: Economic Policy, American Economic Association, vol. 9(3), pages 229-261, August.
    20. Sarah H. Bana & Kelly Bedard & Maya Rossin‐Slater, 2020. "The Impacts of Paid Family Leave Benefits: Regression Kink Evidence from California Administrative Data," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 39(4), pages 888-929, September.

    More about this item

    Keywords

    Regression Discontinuity Design; Regression Kink Design; Treatment Effects; Nonseparable Models; Nonparametric Estimation;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C31 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions; Social Interaction Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:upj:weupjo:15-218. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/upjohus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (email available below). General contact details of provider: https://edirc.repec.org/data/upjohus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.