ddml: Double/Debiased Machine Learning in Stata
Author
Abstract
Suggested Citation
Download full text from publisher
Other versions of this item:
- Achim Ahrens & Christian B. Hansen & Mark E. Schaffer & Thomas Wiemann, 2024. "ddml: Double/debiased machine learning in Stata," Stata Journal, StataCorp LP, vol. 24(1), pages 3-45, March.
- Christian B. Hansen & Mark E. Schaffer & Thomas Wiemann & Achim Ahrens, 2022. "ddml: Double/debiased machine learning in Stata," Swiss Stata Conference 2022 02, Stata Users Group.
- Achim Ahrens & Christian B. Hansen & Mark E. Schaffer & Thomas Wiemann, 2023. "ddml: Double/debiased machine learning in Stata," Papers 2301.09397, arXiv.org, revised Jan 2024.
References listed on IDEAS
- Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2021.
"Economic Predictions With Big Data: The Illusion of Sparsity,"
Econometrica, Econometric Society, vol. 89(5), pages 2409-2437, September.
- Giannone, Domenico & Lenza, Michele & Primiceri, Giorgio, 2017. "Economic Predictions with Big Data: The Illusion Of Sparsity," CEPR Discussion Papers 12256, C.E.P.R. Discussion Papers.
- Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2018. "Economic predictions with big data: the illusion of sparsity," Staff Reports 847, Federal Reserve Bank of New York.
- Giannone, Domenico & Lenza, Michele & Primiceri, Giorgio E., 2021. "Economic predictions with big data: the illusion of sparsity," Working Paper Series 2542, European Central Bank.
- Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2018. "Economic Predictions with Big Data: The Illusion of Sparsity," Liberty Street Economics 20180521, Federal Reserve Bank of New York.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2018.
"Double/debiased machine learning for treatment and structural parameters,"
Econometrics Journal, Royal Economic Society, vol. 21(1), pages 1-68, February.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2017. "Double/Debiased Machine Learning for Treatment and Structural Parameters," NBER Working Papers 23564, National Bureau of Economic Research, Inc.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney K. Newey & James Robins, 2017. "Double/debiased machine learning for treatment and structural parameters," CeMMAP working papers CWP28/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney K. Newey & James Robins, 2017. "Double/debiased machine learning for treatment and structural parameters," CeMMAP working papers 28/17, Institute for Fiscal Studies.
- Victor Chernozhukov & Christian Hansen & Martin Spindler, 2015.
"Post-Selection and Post-Regularization Inference in Linear Models with Many Controls and Instruments,"
American Economic Review, American Economic Association, vol. 105(5), pages 486-490, May.
- Victor Chernozhukov & Christian Hansen & Martin Spindler, 2015. "Post-Selection and Post-Regularization Inference in Linear Models with Many Controls and Instruments," Papers 1501.03185, arXiv.org.
- Victor Chernozhukov & Christian Hansen & Martin Spindler, 2015. "Post-selection and post-regularization inference in linear models with many controls and instruments," CeMMAP working papers 02/15, Institute for Fiscal Studies.
- Victor Chernozhukov & Christian Hansen & Martin Spindler, 2015. "Post-selection and post-regularization inference in linear models with many controls and instruments," CeMMAP working papers CWP02/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Max H. Farrell & Tengyuan Liang & Sanjog Misra, 2021.
"Deep Neural Networks for Estimation and Inference,"
Econometrica, Econometric Society, vol. 89(1), pages 181-213, January.
- Max H. Farrell & Tengyuan Liang & Sanjog Misra, 2018. "Deep Neural Networks for Estimation and Inference," Papers 1809.09953, arXiv.org, revised Sep 2019.
- Stefan Wager & Susan Athey, 2018.
"Estimation and Inference of Heterogeneous Treatment Effects using Random Forests,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1228-1242, July.
- Wager, Stefan & Athey, Susan, 2017. "Estimation and Inference of Heterogeneous Treatment Effects Using Random Forests," Research Papers 3576, Stanford University, Graduate School of Business.
- A. Belloni & D. Chen & V. Chernozhukov & C. Hansen, 2012.
"Sparse Models and Methods for Optimal Instruments With an Application to Eminent Domain,"
Econometrica, Econometric Society, vol. 80(6), pages 2369-2429, November.
- Alexandre Belloni & D. Chen & Victor Chernozhukov & Christian Hansen, 2010. "Sparse models and methods for optimal instruments with an application to eminent domain," CeMMAP working papers CWP31/10, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Alexandre Belloni & Daniel Chen & Victor Chernozhukov & Christian Hansen, 2010. "Sparse Models and Methods for Optimal Instruments with an Application to Eminent Domain," Papers 1010.4345, arXiv.org, revised Apr 2015.
- Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2014. "Inference on Treatment Effects after Selection among High-Dimensional Controlsâ€," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 81(2), pages 608-650.
- Imbens, Guido W & Angrist, Joshua D, 1994.
"Identification and Estimation of Local Average Treatment Effects,"
Econometrica, Econometric Society, vol. 62(2), pages 467-475, March.
- Joshua D. Angrist & Guido W. Imbens, 1995. "Identification and Estimation of Local Average Treatment Effects," NBER Technical Working Papers 0118, National Bureau of Economic Research, Inc.
- Dominik Hangartner & Daniel Kopp & Michael Siegenthaler, 2021.
"Monitoring hiring discrimination through online recruitment platforms,"
Nature, Nature, vol. 589(7843), pages 572-576, January.
- Hangartner, Dominik & Kopp, Daniel & Siegenthaler, Michael, 2021. "Monitoring hiring discrimination through online recruitment platforms," LSE Research Online Documents on Economics 107549, London School of Economics and Political Science, LSE Library.
- Jinyong Hahn, 1998. "On the Role of the Propensity Score in Efficient Semiparametric Estimation of Average Treatment Effects," Econometrica, Econometric Society, vol. 66(2), pages 315-332, March.
- Diva Dhar & Tarun Jain & Seema Jayachandran, 2022.
"Reshaping Adolescents' Gender Attitudes: Evidence from a School-Based Experiment in India,"
American Economic Review, American Economic Association, vol. 112(3), pages 899-927, March.
- Jayachandran, Seema & Dhar, Diva & Jain, Tarun, 2018. "Reshaping Adolescents' Gender Attitudes: Evidence from a School-Based Experiment in India," CEPR Discussion Papers 13413, C.E.P.R. Discussion Papers.
- Diva Dhar & Tarun Jain & Seema Jayachandran, 2018. "Reshaping Adolescents' Gender Attitudes: Evidence from a School-Based Experiment in India," NBER Working Papers 25331, National Bureau of Economic Research, Inc.
- E.F. Haghish, 2019. "Seamless interactive language interfacing between R and Stata," Stata Journal, StataCorp LP, vol. 19(1), pages 61-82, March.
- Margaret E. Roberts & Brandon M. Stewart & Richard A. Nielsen, 2020. "Adjusting for Confounding with Text Matching," American Journal of Political Science, John Wiley & Sons, vol. 64(4), pages 887-903, October.
- A. Belloni & V. Chernozhukov & I. Fernández‐Val & C. Hansen, 2017.
"Program Evaluation and Causal Inference With High‐Dimensional Data,"
Econometrica, Econometric Society, vol. 85, pages 233-298, January.
- Alexandre Belloni & Victor Chernozhukov & Ivan Fern'andez-Val & Christian Hansen, 2013. "Program Evaluation and Causal Inference with High-Dimensional Data," Papers 1311.2645, arXiv.org, revised Jan 2018.
- Alexandre Belloni & Victor Chernozhukov & Ivan Fernandez-Val & Christian Hansen, 2016. "Program evaluation and causal inference with high-dimensional data," CeMMAP working papers 13/16, Institute for Fiscal Studies.
- Alexandre Belloni & Victor Chernozhukov & Ivan Fernandez-Val & Christian Hansen, 2016. "Program evaluation and causal inference with high-dimensional data," CeMMAP working papers CWP13/16, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Joshua D. Angrist & Kathryn Graddy & Guido W. Imbens, 2000. "The Interpretation of Instrumental Variables Estimators in Simultaneous Equations Models with an Application to the Demand for Fish," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 67(3), pages 499-527.
- Poterba, James M. & Venti, Steven F. & Wise, David A., 1995.
"Do 401(k) contributions crowd out other personal saving?,"
Journal of Public Economics, Elsevier, vol. 58(1), pages 1-32, September.
- James M. Poterba & Steven F. Venti & David A. Wise, 1993. "Do 401(k) Contributions Crowd Out Other Persoanl Saving?," NBER Working Papers 4391, National Bureau of Economic Research, Inc.
- Duncan Sheppard Gilchrist & Emily Glassberg Sands, 2016. "Something to Talk About: Social Spillovers in Movie Consumption," Journal of Political Economy, University of Chicago Press, vol. 124(5), pages 1339-1382.
- J.J. Heckman & E.E. Leamer (ed.), 2007. "Handbook of Econometrics," Handbook of Econometrics, Elsevier, edition 1, volume 6, number 6b.
- James J. Heckman & Vytlacil, Edward J., 2007. "Econometric Evaluation of Social Programs, Part I: Causal Models, Structural Models and Econometric Policy Evaluation," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 70, Elsevier.
- Matthias Schonlau & Rosie Yuyan Zou, 2020. "The random forest algorithm for statistical learning," Stata Journal, StataCorp LP, vol. 20(1), pages 3-29, March.
- J.J. Heckman & E.E. Leamer (ed.), 2007. "Handbook of Econometrics," Handbook of Econometrics, Elsevier, edition 1, volume 6, number 6a.
- Berry, Steven & Levinsohn, James & Pakes, Ariel, 1995.
"Automobile Prices in Market Equilibrium,"
Econometrica, Econometric Society, vol. 63(4), pages 841-890, July.
- Steven Berry & James Levinsohn & Ariel Pakes, 1993. "Automobile Prices in Market Equilibrium: Part I and II," NBER Working Papers 4264, National Bureau of Economic Research, Inc.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ahrens, Achim & Hansen, Christian B. & Schaffer, Mark E & Wiemann, Thomas, 2024.
"Model Averaging and Double Machine Learning,"
IZA Discussion Papers
16714, Institute of Labor Economics (IZA).
- Achim Ahrens & Christian B. Hansen & Mark E. Schaffer & Thomas Wiemann, 2024. "Model Averaging and Double Machine Learning," Papers 2401.01645, arXiv.org, revised Sep 2024.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Achim Ahrens & Christian B. Hansen & Mark E. Schaffer & Thomas Wiemann, 2024.
"Model Averaging and Double Machine Learning,"
Papers
2401.01645, arXiv.org, revised Sep 2024.
- Ahrens, Achim & Hansen, Christian B. & Schaffer, Mark E & Wiemann, Thomas, 2024. "Model Averaging and Double Machine Learning," IZA Discussion Papers 16714, Institute of Labor Economics (IZA).
- Arthur Lewbel, 2019.
"The Identification Zoo: Meanings of Identification in Econometrics,"
Journal of Economic Literature, American Economic Association, vol. 57(4), pages 835-903, December.
- Arthur Lewbel, 2018. "The Identification Zoo - Meanings of Identification in Econometrics," Boston College Working Papers in Economics 957, Boston College Department of Economics, revised 14 Dec 2019.
- Agboola, Oluwagbenga David & Yu, Han, 2023. "Neighborhood-based cross fitting approach to treatment effects with high-dimensional data," Computational Statistics & Data Analysis, Elsevier, vol. 186(C).
- Kyle Colangelo & Ying-Ying Lee, 2020. "Double Debiased Machine Learning Nonparametric Inference with Continuous Treatments," Papers 2004.03036, arXiv.org, revised Sep 2023.
- Joshua D. Angrist, 2022.
"Empirical Strategies in Economics: Illuminating the Path From Cause to Effect,"
Econometrica, Econometric Society, vol. 90(6), pages 2509-2539, November.
- Angrist, Joshua, 2021. "Empirical strategies in economics: Illuminating the path from cause to effect," Nobel Prize in Economics documents 2021-4, Nobel Prize Committee.
- Joshua Angrist, 2022. "Empirical Strategies in Economics: Illuminating the Path from Cause to Effect," NBER Working Papers 29726, National Bureau of Economic Research, Inc.
- Su, Liangjun & Ura, Takuya & Zhang, Yichong, 2019.
"Non-separable models with high-dimensional data,"
Journal of Econometrics, Elsevier, vol. 212(2), pages 646-677.
- Su, Liangjun & Ura, Takuya & Zhang, Yichong, 2017. "Non-separable Models with High-dimensional Data," Economics and Statistics Working Papers 15-2017, Singapore Management University, School of Economics.
- Kyle Colangelo & Ying-Ying Lee, 2019. "Double debiased machine learning nonparametric inference with continuous treatments," CeMMAP working papers CWP72/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Huber, Martin, 2019.
"An introduction to flexible methods for policy evaluation,"
FSES Working Papers
504, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
- Martin Huber, 2019. "An introduction to flexible methods for policy evaluation," Papers 1910.00641, arXiv.org.
- Michael C. Knaus, 2021.
"A double machine learning approach to estimate the effects of musical practice on student’s skills,"
Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(1), pages 282-300, January.
- Knaus, Michael C., 2018. "A Double Machine Learning Approach to Estimate the Effects of Musical Practice on Student's Skills," IZA Discussion Papers 11547, Institute of Labor Economics (IZA).
- Michael C. Knaus, 2018. "A Double Machine Learning Approach to Estimate the Effects of Musical Practice on Student's Skills," Papers 1805.10300, arXiv.org, revised Jan 2019.
- Kyle Colangelo & Ying-Ying Lee, 2019. "Double debiased machine learning nonparametric inference with continuous treatments," CeMMAP working papers CWP54/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Philipp Bach & Victor Chernozhukov & Malte S. Kurz & Martin Spindler & Sven Klaassen, 2021. "DoubleML -- An Object-Oriented Implementation of Double Machine Learning in R," Papers 2103.09603, arXiv.org, revised Jun 2024.
- Denis Fougère & Nicolas Jacquemet, 2020.
"Policy Evaluation Using Causal Inference Methods,"
SciencePo Working papers Main
hal-03455978, HAL.
- Denis Fougère & Nicolas Jacquemet, 2020. "Policy Evaluation Using Causal Inference Methods," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-03455978, HAL.
- Denis Fougère & Nicolas Jacquemet, 2021. "Policy Evaluation Using Causal Inference Methods," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-03098058, HAL.
- Denis Fougère & Nicolas Jacquemet, 2021. "Policy Evaluation Using Causal Inference Methods," PSE-Ecole d'économie de Paris (Postprint) hal-03098058, HAL.
- Denis Fougère & Nicolas Jacquemet, 2020. "Policy Evaluation Using Causal Inference Methods," Working Papers hal-03455978, HAL.
- Denis Fougère & Nicolas Jacquemet, 2021. "Policy Evaluation Using Causal Inference Methods," Post-Print hal-03098058, HAL.
- Denis Fougère & Nicolas Jacquemet, 2021. "Policy Evaluation Using Causal Inference Methods," SciencePo Working papers Main hal-03098058, HAL.
- Fougère, Denis & Jacquemet, Nicolas, 2020. "Policy Evaluation Using Causal Inference Methods," IZA Discussion Papers 12922, Institute of Labor Economics (IZA).
- Neng-Chieh Chang, 2020. "The Mode Treatment Effect," Papers 2007.11606, arXiv.org.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2018.
"Double/debiased machine learning for treatment and structural parameters,"
Econometrics Journal, Royal Economic Society, vol. 21(1), pages 1-68, February.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2017. "Double/Debiased Machine Learning for Treatment and Structural Parameters," NBER Working Papers 23564, National Bureau of Economic Research, Inc.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney K. Newey & James Robins, 2017. "Double/debiased machine learning for treatment and structural parameters," CeMMAP working papers CWP28/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney K. Newey & James Robins, 2017. "Double/debiased machine learning for treatment and structural parameters," CeMMAP working papers 28/17, Institute for Fiscal Studies.
- Thomas Wiemann, 2023. "Optimal Categorical Instrumental Variables," Papers 2311.17021, arXiv.org, revised May 2024.
- Max H. Farrell & Tengyuan Liang & Sanjog Misra, 2021.
"Deep Neural Networks for Estimation and Inference,"
Econometrica, Econometric Society, vol. 89(1), pages 181-213, January.
- Max H. Farrell & Tengyuan Liang & Sanjog Misra, 2018. "Deep Neural Networks for Estimation and Inference," Papers 1809.09953, arXiv.org, revised Sep 2019.
- Victor Chernozhukov & Juan Carlos Escanciano & Hidehiko Ichimura & Whitney K. Newey & James M. Robins, 2022.
"Locally Robust Semiparametric Estimation,"
Econometrica, Econometric Society, vol. 90(4), pages 1501-1535, July.
- Victor Chernozhukov & Juan Carlos Escanciano & Hidehiko Ichimura & Whitney K. Newey, 2016. "Locally robust semiparametric estimation," CeMMAP working papers CWP31/16, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Juan Carlos Escanciano & Hidehiko Ichimura & Whitney K. Newey & James M. Robins, 2016. "Locally Robust Semiparametric Estimation," Papers 1608.00033, arXiv.org, revised Aug 2020.
- Victor Chernozhukov & Juan Carlos Escanciano & Hidehiko Ichimura & Whitney K. Newey & James M. Robins, 2018. "Locally robust semiparametric estimation," CeMMAP working papers CWP30/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Juan Carlos Escanciano & Hidehiko Ichimura & Whitney K. Newey, 2016. "Locally robust semiparametric estimation," CeMMAP working papers 31/16, Institute for Fiscal Studies.
- Breunig, Christoph & Mammen, Enno & Simoni, Anna, 2020.
"Ill-posed estimation in high-dimensional models with instrumental variables,"
Journal of Econometrics, Elsevier, vol. 219(1), pages 171-200.
- Christoph Breunig & Enno Mammen & Anna Simoni, 2018. "Ill-posed Estimation in High-Dimensional Models with Instrumental Variables," Papers 1806.00666, arXiv.org, revised Aug 2020.
- Christoph Breunig & Enno Mammen & Anna Simoni, 2020. "Ill-posed estimation in high-dimensional models with instrumental variables," Post-Print hal-03089879, HAL.
- Johann Pfitzinger, 2021. "An Interpretable Neural Network for Parameter Inference," Papers 2106.05536, arXiv.org.
- Haitian Xie, 2020. "Efficient and Robust Estimation of the Generalized LATE Model," Papers 2001.06746, arXiv.org, revised Feb 2022.
More about this item
Keywords
st0001; causal inference; machine learning; doubly-robust estimation;All these keywords.
JEL classification:
- C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
- C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
- C87 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Econometric Software
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2023-03-20 (Big Data)
- NEP-CMP-2023-03-20 (Computational Economics)
- NEP-DCM-2023-03-20 (Discrete Choice Models)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:iza:izadps:dp15963. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Holger Hinte (email available below). General contact details of provider: https://edirc.repec.org/data/izaaade.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.