Doubly Robust Estimation of Local Average Treatment Effects Using Inverse Probability Weighted Regression Adjustment
Author
Abstract
Suggested Citation
Download full text from publisher
Other versions of this item:
- Tymon S{l}oczy'nski & S. Derya Uysal & Jeffrey M. Wooldridge, 2022. "Doubly Robust Estimation of Local Average Treatment Effects Using Inverse Probability Weighted Regression Adjustment," Papers 2208.01300, arXiv.org, revised Nov 2022.
- Sloczynski, Tymon & Uysal, Derya & Wooldridge, Jeffrey M., 2022. "Doubly Robust Estimation of Local Average Treatment Effects Using Inverse Probability Weighted Regression Adjustment," IZA Discussion Papers 15727, Institute of Labor Economics (IZA).
References listed on IDEAS
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2018.
"Double/debiased machine learning for treatment and structural parameters,"
Econometrics Journal, Royal Economic Society, vol. 21(1), pages 1-68, February.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2017. "Double/Debiased Machine Learning for Treatment and Structural Parameters," NBER Working Papers 23564, National Bureau of Economic Research, Inc.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney K. Newey & James Robins, 2017. "Double/debiased machine learning for treatment and structural parameters," CeMMAP working papers CWP28/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney K. Newey & James Robins, 2017. "Double/debiased machine learning for treatment and structural parameters," CeMMAP working papers 28/17, Institute for Fiscal Studies.
- Stephen G. Donald & Yu-Chin Hsu & Robert P. Lieli, 2014.
"Testing the Unconfoundedness Assumption via Inverse Probability Weighted Estimators of (L)ATT,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(3), pages 395-415, July.
- Stephen G. Donald & Yu-Chin Hsu & Robert P. Lieli, 2012. "Testing the Unconfoundedness Assumption via Inverse Probability Weighted Estimators of (L)ATT," IEAS Working Paper : academic research 12-A017, Institute of Economics, Academia Sinica, Taipei, Taiwan.
- Hausman, Jerry, 2015.
"Specification tests in econometrics,"
Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 38(2), pages 112-134.
- Hausman, Jerry A, 1978. "Specification Tests in Econometrics," Econometrica, Econometric Society, vol. 46(6), pages 1251-1271, November.
- J. A. Hausman, 1976. "Specification Tests in Econometrics," Working papers 185, Massachusetts Institute of Technology (MIT), Department of Economics.
- Augustine Denteh & Helge Liebert, 2022.
"Who Increases Emergency Department Use? New Insights from the Oregon Health Insurance Experiment,"
Papers
2201.07072, arXiv.org, revised Apr 2023.
- Augustine Denteh & Helge Liebert, 2022. "Who Increases Emergency Department Use? New Insights from the Oregon Health Insurance Experiment," CESifo Working Paper Series 9664, CESifo.
- Denteh, Augustine & Liebert, Helge, 2022. "Who Increases Emergency Department Use? New Insights from the Oregon Health Insurance Experiment," IZA Discussion Papers 15192, Institute of Labor Economics (IZA).
- Augustine Denteh & Helge Liebert, 2022. "Who Increases Emergency Department Use? New Insights from the Oregon Health Insurance Experiment," Working Papers 2201, Tulane University, Department of Economics.
- Tymon Sloczynski, 2021.
"When Should We (Not) Interpret Linear IV Estimands as LATE?,"
CESifo Working Paper Series
9064, CESifo.
- Sloczynski, Tymon, 2021. "When Should We (Not) Interpret Linear IV Estimands as LATE?," IZA Discussion Papers 14349, Institute of Labor Economics (IZA).
- Abadie, Alberto, 2003. "Semiparametric instrumental variable estimation of treatment response models," Journal of Econometrics, Elsevier, vol. 113(2), pages 231-263, April.
- Tan, Zhiqiang, 2006. "Regression and Weighting Methods for Causal Inference Using Instrumental Variables," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1607-1618, December.
- David A. Wise, 1994. "Studies in the Economics of Aging," NBER Books, National Bureau of Economic Research, Inc, number wise94-1.
- Angrist, Joshua D & Evans, William N, 1998.
"Children and Their Parents' Labor Supply: Evidence from Exogenous Variation in Family Size,"
American Economic Review, American Economic Association, vol. 88(3), pages 450-477, June.
- Joshua D. Angrist & William N. Evans, 1996. "Children and Their Parents' Labor Supply: Evidence from Exogenous Variation in Family Size," NBER Working Papers 5778, National Bureau of Economic Research, Inc.
- Wooldridge, Jeffrey M., 2007.
"Inverse probability weighted estimation for general missing data problems,"
Journal of Econometrics, Elsevier, vol. 141(2), pages 1281-1301, December.
- Jeffrey M. Wooldridge, 2004. "Inverse probability weighted estimation for general missing data problems," CeMMAP working papers CWP05/04, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Jeffrey M. Wooldridge, 2004. "Inverse probability weighted estimation for general missing data problems," CeMMAP working papers 05/04, Institute for Fiscal Studies.
- Baoluo Sun & Zhiqiang Tan, 2022. "High-Dimensional Model-Assisted Inference for Local Average Treatment Effects With Instrumental Variables," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(4), pages 1732-1744, October.
- Elizabeth L. Ogburn & Andrea Rotnitzky & James M. Robins, 2015. "Doubly robust estimation of the local average treatment effect curve," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 77(2), pages 373-396, March.
- Imbens,Guido W. & Rubin,Donald B., 2015. "Causal Inference for Statistics, Social, and Biomedical Sciences," Cambridge Books, Cambridge University Press, number 9780521885881, October.
- Phillip Heiler, 2022. "Efficient Covariate Balancing for the Local Average Treatment Effect," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(4), pages 1569-1582, October.
- Edward Vytlacil, 2002. "Independence, Monotonicity, and Latent Index Models: An Equivalence Result," Econometrica, Econometric Society, vol. 70(1), pages 331-341, January.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Tymon S{l}oczy'nski & S. Derya Uysal & Jeffrey M. Wooldridge, 2023. "Covariate Balancing and the Equivalence of Weighting and Doubly Robust Estimators of Average Treatment Effects," Papers 2310.18563, arXiv.org.
- Yukun Ma & Pedro H. C. Sant'Anna & Yuya Sasaki & Takuya Ura, 2023. "Doubly Robust Estimators with Weak Overlap," Papers 2304.08974, arXiv.org, revised Apr 2023.
- Sloczynski, Tymon & Uysal, Derya & Wooldridge, Jeffrey M., 2022.
"Abadie's Kappa and Weighting Estimators of the Local Average Treatment Effect,"
IZA Discussion Papers
15241, Institute of Labor Economics (IZA).
- Derya Uysal, 2023. "Abadie's kappa and weighting estimators of the local average treatment effect," Economics Virtual Symposium 2023 01, Stata Users Group.
- Tymon Sloczynski & Derya Uysal & Jeffrey Wooldridge, 2023. "Abadie's Kappa and Weighting Estimators of the Local Average Treatment Effect," Rationality and Competition Discussion Paper Series 424, CRC TRR 190 Rationality and Competition.
- Tymon Sloczynski & S. Derya Uysal & Jeffrey M. Wooldridge & Derya Uysal, 2022.
"Abadie's Kappa and Weighting Estimators of the Local Average Treatment Effect,"
CESifo Working Paper Series
9715, CESifo.
- Tymon S{l}oczy'nski & S. Derya Uysal & Jeffrey M. Wooldridge, 2022. "Abadie's Kappa and Weighting Estimators of the Local Average Treatment Effect," Papers 2204.07672, arXiv.org, revised Feb 2024.
- Sloczynski, Tymon & Uysal, Derya & Wooldridge, Jeffrey M., 2022. "Abadie's Kappa and Weighting Estimators of the Local Average Treatment Effect," IZA Discussion Papers 15241, Institute of Labor Economics (IZA).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Huber Martin & Wüthrich Kaspar, 2019.
"Local Average and Quantile Treatment Effects Under Endogeneity: A Review,"
Journal of Econometric Methods, De Gruyter, vol. 8(1), pages 1-27, January.
- Huber, Martin & Wüthrich, Kaspar, 2019. "Local Average and Quantile Treatment Effects Under Endogeneity: A Review," University of California at San Diego, Economics Working Paper Series qt4j29d8sc, Department of Economics, UC San Diego.
- Yumou Qiu & Jing Tao & Xiao‐Hua Zhou, 2021. "Inference of heterogeneous treatment effects using observational data with high‐dimensional covariates," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(5), pages 1016-1043, November.
- Phillip Heiler, 2020. "Efficient Covariate Balancing for the Local Average Treatment Effect," Papers 2007.04346, arXiv.org.
- Huber, Martin & Wüthrich, Kaspar, 2017. "Evaluating local average and quantile treatment effects under endogeneity based on instruments: a review," FSES Working Papers 479, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
- Kazuhiko Shinoda & Takahiro Hoshino, 2022. "Orthogonal Series Estimation for the Ratio of Conditional Expectation Functions," Papers 2212.13145, arXiv.org.
- Alexandre Belloni & Victor Chernozhukov & Ivan Fernandez-Val & Christian Hansen, 2013.
"Program evaluation with high-dimensional data,"
CeMMAP working papers
CWP77/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Alexandre Belloni & Victor Chernozhukov & Ivan Fernandez-Val & Christian Hansen, 2015. "Program evaluation with high-dimensional data," CeMMAP working papers 55/15, Institute for Fiscal Studies.
- Alexandre Belloni & Victor Chernozhukov & Ivan Fernandez-Val & Christian Hansen, 2014. "Program evaluation with high-dimensional data," CeMMAP working papers CWP33/14, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Ivan Fernandez-Val & Christian Hansen, 2013. "Program evaluation with high-dimensional data," CeMMAP working papers 57/13, Institute for Fiscal Studies.
- Alexandre Belloni & Victor Chernozhukov & Ivan Fernandez-Val & Christian Hansen, 2015. "Program evaluation with high-dimensional data," CeMMAP working papers CWP55/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Alexandre Belloni & Victor Chernozhukov & Ivan Fernandez-Val & Christian Hansen, 2014. "Program evaluation with high-dimensional data," CeMMAP working papers 33/14, Institute for Fiscal Studies.
- Alexandre Belloni & Victor Chernozhukov & Ivan Fernandez-Val & Christian Hansen, 2013. "Program evaluation with high-dimensional data," CeMMAP working papers 77/13, Institute for Fiscal Studies.
- Victor Chernozhukov & Ivan Fernandez-Val & Christian Hansen, 2013. "Program evaluation with high-dimensional data," CeMMAP working papers CWP57/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Sokbae Lee & Ryo Okui & Yoon†Jae Whang, 2017.
"Doubly robust uniform confidence band for the conditional average treatment effect function,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(7), pages 1207-1225, November.
- Sokbae Lee & Ryo Okui & Yoon-Jae Whang, 2016. "Doubly Robust Uniform Confidence Band for the Conditional Average Treatment Effect Function," Papers 1601.02801, arXiv.org, revised Oct 2016.
- Lee, Sokbae & Okui, Ryo & Whang, Yoon-Jae, 2017. "Doubly robust uniform confidence band for the conditional average treatment effect function," LSE Research Online Documents on Economics 86852, London School of Economics and Political Science, LSE Library.
- Sokbae (Simon) Lee & Ryo Okui & Yoon-Jae Whang, 2016. "Doubly robust uniform confidence band for the conditional average treatment effect function," CeMMAP working papers 03/16, Institute for Fiscal Studies.
- Sokbae Lee & Ryo Okui & Yoon-Jae Whang, 2016. "Doubly Robust Uniform Confidence Band For The Conditional Average Treatment Effect Function," KIER Working Papers 931, Kyoto University, Institute of Economic Research.
- Sokbae (Simon) Lee & Ryo Okui & Yoon-Jae Whang, 2016. "Doubly robust uniform confidence band for the conditional average treatment effect function," CeMMAP working papers CWP03/16, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Zongwu Cai & Ying Fang & Ming Lin & Shengfang Tang, 2020. "Testing Unconfoundedness Assumption Using Auxiliary Variables," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202004, University of Kansas, Department of Economics, revised Feb 2020.
- Martin Huber & Jannis Kueck, 2022. "Testing the identification of causal effects in observational data," Papers 2203.15890, arXiv.org, revised Jun 2023.
- A. Belloni & V. Chernozhukov & I. Fernández‐Val & C. Hansen, 2017.
"Program Evaluation and Causal Inference With High‐Dimensional Data,"
Econometrica, Econometric Society, vol. 85, pages 233-298, January.
- Alexandre Belloni & Victor Chernozhukov & Ivan Fern'andez-Val & Christian Hansen, 2013. "Program Evaluation and Causal Inference with High-Dimensional Data," Papers 1311.2645, arXiv.org, revised Jan 2018.
- Alexandre Belloni & Victor Chernozhukov & Ivan Fernandez-Val & Christian Hansen, 2016. "Program evaluation and causal inference with high-dimensional data," CeMMAP working papers 13/16, Institute for Fiscal Studies.
- Alexandre Belloni & Victor Chernozhukov & Ivan Fernandez-Val & Christian Hansen, 2016. "Program evaluation and causal inference with high-dimensional data," CeMMAP working papers CWP13/16, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Huber, Martin, 2019.
"An introduction to flexible methods for policy evaluation,"
FSES Working Papers
504, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
- Martin Huber, 2019. "An introduction to flexible methods for policy evaluation," Papers 1910.00641, arXiv.org.
- Black, Dan A. & Joo, Joonhwi & LaLonde, Robert & Smith, Jeffrey A. & Taylor, Evan J., 2022.
"Simple Tests for Selection: Learning More from Instrumental Variables,"
Labour Economics, Elsevier, vol. 79(C).
- Dan A. Black & Joonhwi Joo & Robert LaLonde & Jeffrey Andrew Smith & Evan J. Taylor, 2017. "Simple Tests for Selection: Learning More from Instrumental Variables," CESifo Working Paper Series 6392, CESifo.
- Dan Black & Joonhwi Joo & Robert LaLonde & Jeffrey Smith & Evan Taylor, 2020. "Simple Tests for Selection: Learning More from Instrumental Variables," Working Papers 2020-048, Human Capital and Economic Opportunity Working Group.
- Dan A. Black & Joonhwi Joo & Robert LaLonde & Jeffrey A. Smith & Evan J. Taylor, 2022. "Simple Tests for Selection: Learning More from Instrumental Variables," NBER Working Papers 30291, National Bureau of Economic Research, Inc.
- Choi, Jin-young & Lee, Goeun & Lee, Myoung-jae, 2023. "Endogenous treatment effect for any response conditional on control propensity score," Statistics & Probability Letters, Elsevier, vol. 196(C).
- Chunrong Ai & Lukang Huang & Zheng Zhang, 2018. "A Simple and Efficient Estimation of the Average Treatment Effect in the Presence of Unmeasured Confounders," Papers 1807.05678, arXiv.org.
- Zhichao Jiang & Shu Yang & Peng Ding, 2022. "Multiply robust estimation of causal effects under principal ignorability," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(4), pages 1423-1445, September.
- Shengfang Tang & Zongwu Cai & Ying Fang & Ming Lin, 2019. "Testing Unconfoundedness Assumption Using Auxiliary Variables," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 201905, University of Kansas, Department of Economics, revised Mar 2019.
- Myoung‐jae Lee, 2021. "Instrument residual estimator for any response variable with endogenous binary treatment," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(3), pages 612-635, July.
- Ruoxuan Xiong & Allison Koenecke & Michael Powell & Zhu Shen & Joshua T. Vogelstein & Susan Athey, 2021.
"Federated Causal Inference in Heterogeneous Observational Data,"
Papers
2107.11732, arXiv.org, revised Apr 2023.
- Xiong, Ruoxuan & Koenecke, Allison & Powell, Michael & Shen, Zhu & Vogelstein, Joshua T. & Athey, Susan, 2021. "Federated Causal Inference in Heterogeneous Observational Data," Research Papers 3990, Stanford University, Graduate School of Business.
- Pedro H. C. Sant'Anna & Xiaojun Song & Qi Xu, 2022.
"Covariate distribution balance via propensity scores,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(6), pages 1093-1120, September.
- Pedro H. C. Sant'Anna & Xiaojun Song & Qi Xu, 2018. "Covariate Distribution Balance via Propensity Scores," Papers 1810.01370, arXiv.org, revised Apr 2020.
- Joshua D. Angrist, 2004.
"Treatment effect heterogeneity in theory and practice,"
Economic Journal, Royal Economic Society, vol. 114(494), pages 52-83, March.
- Joshua D. Angrist, 2003. "Treatment Effect Heterogeneity in Theory and Practice," NBER Working Papers 9708, National Bureau of Economic Research, Inc.
- Joshua Angrist, 2004. "Treatment Effect Heterogeneity in Theory and Practice," Econometric Society 2004 North American Winter Meetings 186, Econometric Society.
- Angrist, Joshua, 2003. "Treatment Effect Heterogeneity in Theory and Practice," IZA Discussion Papers 851, Institute of Labor Economics (IZA).
More about this item
Keywords
double robustness; instrumental variables; local average treatment effects; one-sided noncompliance;All these keywords.
JEL classification:
- C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
- C26 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Instrumental Variables (IV) Estimation
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ces:ceswps:_10105. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Klaus Wohlrabe (email available below). General contact details of provider: https://edirc.repec.org/data/cesifde.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.