IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2302.14423.html
   My bibliography  Save this paper

Assessing the strength of many instruments with the first-stage F and Cragg-Donald statistics

Author

Listed:
  • Zhenhong Huang
  • Chen Wang
  • Jianfeng Yao

Abstract

This paper investigates the behavior of Stock and Yogo (2005)'s first-stage F statistic and the Cragg-Donald statistic (Cragg and Donald, 1993) when the number of instruments and the sample size go to infinity in a comparable magnitude. Our theory shows that the first-stage F test is oversized for detecting many weak instruments. We next propose an asymptotically valid correction of the F statistic for testing weakness of instruments. The theory is also used to construct confidence intervals for the strength of instruments. As for the Cragg-Donald statistic, we obtain an asymptotically valid correction in the case of two endogenous variables. Monte Carlo experiments demonstrate the satisfactory performance of the proposed methods in both situations of a single and multiple endogenous variables. The usefulness of the proposed tests is illustrated by an analysis of the returns to education data in Angrist and Keueger (1991).

Suggested Citation

  • Zhenhong Huang & Chen Wang & Jianfeng Yao, 2023. "Assessing the strength of many instruments with the first-stage F and Cragg-Donald statistics," Papers 2302.14423, arXiv.org.
  • Handle: RePEc:arx:papers:2302.14423
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2302.14423
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Manudeep Bhuller & Gordon B. Dahl & Katrine V. Løken & Magne Mogstad, 2020. "Incarceration, Recidivism, and Employment," Journal of Political Economy, University of Chicago Press, vol. 128(4), pages 1269-1324.
    2. Will Dobbie & Jacob Goldin & Crystal S. Yang, 2018. "The Effects of Pretrial Detention on Conviction, Future Crime, and Employment: Evidence from Randomly Assigned Judges," American Economic Review, American Economic Association, vol. 108(2), pages 201-240, February.
    3. Gergely Ganics & Atsushi Inoue & Barbara Rossi, 2021. "Confidence Intervals for Bias and Size Distortion in IV and Local Projections-IV Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(1), pages 307-324, January.
    4. Anatolyev, Stanislav, 2012. "Inference in regression models with many regressors," Journal of Econometrics, Elsevier, vol. 170(2), pages 368-382.
    5. Jerry A. Hausman & Whitney K. Newey & Tiemen Woutersen & John C. Chao & Norman R. Swanson, 2012. "Instrumental variable estimation with heteroskedasticity and many instruments," Quantitative Economics, Econometric Society, vol. 3(2), pages 211-255, July.
    6. Lee, Yoonseok & Okui, Ryo, 2012. "Hahn–Hausman test as a specification test," Journal of Econometrics, Elsevier, vol. 167(1), pages 133-139.
    7. Anna Mikusheva & Liyang Sun, 2022. "Inference with Many Weak Instruments [Specification Testing in Models with Many Instruments]," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 89(5), pages 2663-2686.
    8. Hausman, Jerry & Stock, James H. & Yogo, Motohiro, 2005. "Asymptotic properties of the Hahn-Hausman test for weak-instruments," Economics Letters, Elsevier, vol. 89(3), pages 333-342, December.
    9. Joshua D. Angrist & Alan B. Krueger, 1993. "Split Sample Instrumental Variables," Working Papers 699, Princeton University, Department of Economics, Industrial Relations Section..
    10. Wang, Wenjie & Kaffo, Maximilien, 2016. "Bootstrap inference for instrumental variable models with many weak instruments," Journal of Econometrics, Elsevier, vol. 192(1), pages 231-268.
    11. John C. Chao & Norman R. Swanson, 2005. "Consistent Estimation with a Large Number of Weak Instruments," Econometrica, Econometric Society, vol. 73(5), pages 1673-1692, September.
    12. Jiahui Wang & Eric Zivot, 1998. "Inference on Structural Parameters in Instrumental Variables Regression with Weak Instruments," Econometrica, Econometric Society, vol. 66(6), pages 1389-1404, November.
    13. Cragg, John G. & Donald, Stephen G., 1993. "Testing Identifiability and Specification in Instrumental Variable Models," Econometric Theory, Cambridge University Press, vol. 9(2), pages 222-240, April.
    14. D. S. Poskitt & C. L. Skeels, 2009. "Assessing the magnitude of the concentration parameter in a simultaneous equations model," Econometrics Journal, Royal Economic Society, vol. 12(1), pages 26-44, March.
    15. Chao, John C. & Hausman, Jerry A. & Newey, Whitney K. & Swanson, Norman R. & Woutersen, Tiemen, 2014. "Testing overidentifying restrictions with many instruments and heteroskedasticity," Journal of Econometrics, Elsevier, vol. 178(P1), pages 15-21.
    16. Zhidong Bai & Guangming Pan & Yanqing Yin, 2018. "A central limit theorem for sums of functions of residuals in a high-dimensional regression model with an application to variance homoscedasticity test," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(4), pages 896-920, December.
    17. Jinyong Hahn & Jerry Hausman, 2002. "A New Specification Test for the Validity of Instrumental Variables," Econometrica, Econometric Society, vol. 70(1), pages 163-189, January.
    18. Anatolyev, Stanislav & Gospodinov, Nikolay, 2011. "Specification Testing In Models With Many Instruments," Econometric Theory, Cambridge University Press, vol. 27(2), pages 427-441, April.
    19. Li, Zhaoyuan & Yao, Jianfeng, 2019. "Testing for heteroscedasticity in high-dimensional regressions," Econometrics and Statistics, Elsevier, vol. 9(C), pages 122-139.
    20. Hansen, Christian & Hausman, Jerry & Newey, Whitney, 2008. "Estimation With Many Instrumental Variables," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 398-422.
    21. Angrist, Joshua D & Krueger, Alan B, 1995. "Split-Sample Instrumental Variables Estimates of the Return to Schooling," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(2), pages 225-235, April.
    22. Bekker, Paul A, 1994. "Alternative Approximations to the Distributions of Instrumental Variable Estimators," Econometrica, Econometric Society, vol. 62(3), pages 657-681, May.
    23. Douglas Staiger & James H. Stock, 1997. "Instrumental Variables Regression with Weak Instruments," Econometrica, Econometric Society, vol. 65(3), pages 557-586, May.
    24. Anatolyev, Stanislav & Yaskov, Pavel, 2017. "Asymptotics Of Diagonal Elements Of Projection Matrices Under Many Instruments/Regressors," Econometric Theory, Cambridge University Press, vol. 33(3), pages 717-738, June.
    25. Anderson, T.W. & Kunitomo, Naoto & Matsushita, Yukitoshi, 2010. "On the asymptotic optimality of the LIML estimator with possibly many instruments," Journal of Econometrics, Elsevier, vol. 157(2), pages 191-204, August.
    26. Joshua D. Angrist & Alan B. Keueger, 1991. "Does Compulsory School Attendance Affect Schooling and Earnings?," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 106(4), pages 979-1014.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhenhong Huang & Chen Wang & Jianfeng Yao, 2023. "A specification test for the strength of instrumental variables," Papers 2302.14396, arXiv.org.
    2. Wang, Wenjie & Kaffo, Maximilien, 2016. "Bootstrap inference for instrumental variable models with many weak instruments," Journal of Econometrics, Elsevier, vol. 192(1), pages 231-268.
    3. Dennis Lim & Wenjie Wang & Yichong Zhang, 2022. "A Conditional Linear Combination Test with Many Weak Instruments," Papers 2207.11137, arXiv.org, revised Apr 2023.
    4. Kolesár, Michal, 2018. "Minimum distance approach to inference with many instruments," Journal of Econometrics, Elsevier, vol. 204(1), pages 86-100.
    5. Johannes W. Ligtenberg, 2023. "Inference in IV models with clustered dependence, many instruments and weak identification," Papers 2306.08559, arXiv.org, revised Mar 2024.
    6. Michal Kolesár & Raj Chetty & John Friedman & Edward Glaeser & Guido W. Imbens, 2015. "Identification and Inference With Many Invalid Instruments," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(4), pages 474-484, October.
    7. Sølvsten, Mikkel, 2020. "Robust estimation with many instruments," Journal of Econometrics, Elsevier, vol. 214(2), pages 495-512.
    8. Guo, Zijian & Kang, Hyunseung & Cai, T. Tony & Small, Dylan S., 2018. "Testing endogeneity with high dimensional covariates," Journal of Econometrics, Elsevier, vol. 207(1), pages 175-187.
    9. Matsushita, Yukitoshi & Otsu, Taisuke, 2022. "A jackknife Lagrange multiplier test with many weak instruments," LSE Research Online Documents on Economics 116392, London School of Economics and Political Science, LSE Library.
    10. Daniel A. Ackerberg & Paul J. Devereux, 2009. "Improved JIVE Estimators for Overidentified Linear Models with and without Heteroskedasticity," The Review of Economics and Statistics, MIT Press, vol. 91(2), pages 351-362, May.
    11. Thomas Wiemann, 2023. "Optimal Categorical Instrumental Variables," Papers 2311.17021, arXiv.org.
    12. Marine Carrasco & Mohamed Doukali, 2022. "Testing overidentifying restrictions with many instruments and heteroscedasticity using regularised jackknife IV [Specification testing in models with many instruments]," The Econometrics Journal, Royal Economic Society, vol. 25(1), pages 71-97.
    13. Anna Mikusheva & Liyang Sun, 2023. "Weak Identification with Many Instruments," Papers 2308.09535, arXiv.org, revised Jan 2024.
    14. Wang, Wenjie, 2020. "On Bootstrap Validity for the Test of Overidentifying Restrictions with Many Instruments and Heteroskedasticity," MPRA Paper 104858, University Library of Munich, Germany.
    15. Crudu, Federico & Mellace, Giovanni & Sándor, Zsolt, 2021. "Inference In Instrumental Variable Models With Heteroskedasticity And Many Instruments," Econometric Theory, Cambridge University Press, vol. 37(2), pages 281-310, April.
    16. Paul A. Bekker & Jan van der Ploeg, 2000. "Instrumental Variable Estimation Based on Grouped Data," Econometric Society World Congress 2000 Contributed Papers 1862, Econometric Society.
    17. Lee, Yoonseok & Okui, Ryo, 2012. "Hahn–Hausman test as a specification test," Journal of Econometrics, Elsevier, vol. 167(1), pages 133-139.
    18. Carrasco, Marine & Tchuente, Guy, 2015. "Regularized LIML for many instruments," Journal of Econometrics, Elsevier, vol. 186(2), pages 427-442.
    19. Jaeger, David A. & Parys, Juliane, 2009. "On the Sensitivity of Return to Schooling Estimates to Estimation Methods, Model Specification, and Influential Outliers If Identification Is Weak," IZA Discussion Papers 3961, Institute of Labor Economics (IZA).
    20. Dufour, Jean-Marie & Taamouti, Mohamed, 2007. "Further results on projection-based inference in IV regressions with weak, collinear or missing instruments," Journal of Econometrics, Elsevier, vol. 139(1), pages 133-153, July.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2302.14423. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.