IDEAS home Printed from https://ideas.repec.org/a/cup/etheor/v27y2011i02p427-441_00.html
   My bibliography  Save this article

Specification Testing In Models With Many Instruments

Author

Listed:
  • Anatolyev, Stanislav
  • Gospodinov, Nikolay

Abstract

This paper studies the asymptotic validity of the Anderson–Rubin (AR) test and the J test for overidentifying restrictions in linear models with many instruments. When the number of instruments increases at the same rate as the sample size, we establish that the conventional AR and J tests are asymptotically incorrect. Some versions of these tests, which are developed for situations with moderately many instruments, are also shown to be asymptotically invalid in this framework. We propose modifications of the AR and J tests that deliver asymptotically correct sizes. Importantly, the corrected tests are robust to the numerosity of the moment conditions in the sense that they are valid for both few and many instruments. The simulation results illustrate the excellent properties of the proposed tests.

Suggested Citation

  • Anatolyev, Stanislav & Gospodinov, Nikolay, 2011. "Specification Testing In Models With Many Instruments," Econometric Theory, Cambridge University Press, vol. 27(2), pages 427-441, April.
  • Handle: RePEc:cup:etheor:v:27:y:2011:i:02:p:427-441_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0266466610000307/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Ledoit, Olivier & Wolf, Michael, 2004. "A well-conditioned estimator for large-dimensional covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 88(2), pages 365-411, February.
    2. Koenker, Roger & Machado, Jose A. F., 1999. "GMM inference when the number of moment conditions is large," Journal of Econometrics, Elsevier, vol. 93(2), pages 327-344, December.
    3. Andersen, Torben G & Sorensen, Bent E, 1996. "GMM Estimation of a Stochastic Volatility Model: A Monte Carlo Study," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(3), pages 328-352, July.
    4. Burnside, Craig & Eichenbaum, Martin S, 1996. "Small-Sample Properties of GMM-Based Wald Tests," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(3), pages 294-308, July.
    5. John C. Chao & Norman R. Swanson, 2005. "Consistent Estimation with a Large Number of Weak Instruments," Econometrica, Econometric Society, vol. 73(5), pages 1673-1692, September.
    6. Joshua D. Angrist & Alan B. Keueger, 1991. "Does Compulsory School Attendance Affect Schooling and Earnings?," The Quarterly Journal of Economics, Oxford University Press, vol. 106(4), pages 979-1014.
    7. Bekker, Paul A, 1994. "Alternative Approximations to the Distributions of Instrumental Variable Estimators," Econometrica, Econometric Society, vol. 62(3), pages 657-681, May.
    8. Andrews, Donald W.K. & Stock, James H., 2007. "Testing with many weak instruments," Journal of Econometrics, Elsevier, vol. 138(1), pages 24-46, May.
    9. H. Kelejian, Harry & Prucha, Ingmar R., 2001. "On the asymptotic distribution of the Moran I test statistic with applications," Journal of Econometrics, Elsevier, vol. 104(2), pages 219-257, September.
    10. Donald, Stephen G. & Imbens, Guido W. & Newey, Whitney K., 2003. "Empirical likelihood estimation and consistent tests with conditional moment restrictions," Journal of Econometrics, Elsevier, vol. 117(1), pages 55-93, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pierre Chaussé, 2011. "Generalized empirical likelihood for a continuum of moment conditions," Working Papers 1104, University of Waterloo, Department of Economics, revised Oct 2011.
    2. Wenjie Wang, 2012. "Bootstrapping Anderson-Rubin Statistic and J Statistic in Linear IV Models with Many Instruments," KIER Working Papers 810, Kyoto University, Institute of Economic Research.
    3. Kaffo, Maximilien & Wang, Wenjie, 2017. "On bootstrap validity for specification testing with many weak instruments," Economics Letters, Elsevier, vol. 157(C), pages 107-111.
    4. Lee, Yoonseok & Okui, Ryo, 2012. "Hahn–Hausman test as a specification test," Journal of Econometrics, Elsevier, vol. 167(1), pages 133-139.
    5. Dick, Christian D. & Schmeling, Maik & Schrimpf, Andreas, 2013. "Macro-expectations, aggregate uncertainty, and expected term premia," European Economic Review, Elsevier, vol. 58(C), pages 58-80.
    6. Crudu, Federico & Mellace, Giovanni & Sándor, Zsolt, 2021. "Inference In Instrumental Variable Models With Heteroskedasticity And Many Instruments," Econometric Theory, Cambridge University Press, vol. 37(2), pages 281-310, April.
    7. Chao, John C. & Hausman, Jerry A. & Newey, Whitney K. & Swanson, Norman R. & Woutersen, Tiemen, 2014. "Testing overidentifying restrictions with many instruments and heteroskedasticity," Journal of Econometrics, Elsevier, vol. 178(P1), pages 15-21.
    8. Michal Kolesár & Raj Chetty & John Friedman & Edward Glaeser & Guido W. Imbens, 2015. "Identification and Inference With Many Invalid Instruments," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(4), pages 474-484, October.
    9. Max-Sebastian Dov`i, 2021. "Inference on the New Keynesian Phillips Curve with Very Many Instrumental Variables," Papers 2101.09543, arXiv.org, revised Mar 2021.
    10. Díaz Antonia & Puch Luis A., 2019. "Investment, technological progress and energy efficiency," The B.E. Journal of Macroeconomics, De Gruyter, vol. 19(2), pages 1-28, June.
    11. Kohtaro Hitomi & Masamune Iwasawa & Yoshihiko Nishiyama, 2020. "Optimal Minimax Rates against Non-smooth Alternatives," KIER Working Papers 1051, Kyoto University, Institute of Economic Research.
    12. Wang, Wenjie & Kaffo, Maximilien, 2016. "Bootstrap inference for instrumental variable models with many weak instruments," Journal of Econometrics, Elsevier, vol. 192(1), pages 231-268.
    13. Stanislav Anatolyev, 2013. "Instrumental variables estimation and inference in the presence of many exogenous regressors," Econometrics Journal, Royal Economic Society, vol. 16(1), pages 27-72, February.
    14. Yoonseok Lee & Ryo Okui, 2009. "A Specification Test for Instrumental Variables Regression with Many Instruments," Cowles Foundation Discussion Papers 1741, Cowles Foundation for Research in Economics, Yale University.
    15. Abutaliev, Albert & Anatolyev, Stanislav, 2013. "Asymptotic variance under many instruments: Numerical computations," Economics Letters, Elsevier, vol. 118(2), pages 272-274.
    16. Atsushi Inoue & Barbara Rossi, 2015. "Tests for the validity of portfolio or group choice in financial and panel regressions," Economics Working Papers 1523, Department of Economics and Business, Universitat Pompeu Fabra.
    17. Wang, Wenjie, 2020. "On Bootstrap Validity for the Test of Overidentifying Restrictions with Many Instruments and Heteroskedasticity," MPRA Paper 104858, University Library of Munich, Germany.
    18. Kolesár, Michal, 2018. "Minimum distance approach to inference with many instruments," Journal of Econometrics, Elsevier, vol. 204(1), pages 86-100.
    19. Marine Carrasco & Guy Tchuente, 2016. "Regularization Based Anderson Rubin Tests for Many Instruments," Studies in Economics 1608, School of Economics, University of Kent.
    20. Kohtaro Hitomi & Masamune Iwasawa & Yoshihiko Nishiyama, 2018. "Rate Optimal Specification Test When the Number of Instruments is Large," KIER Working Papers 986, Kyoto University, Institute of Economic Research.
    21. Travaglini, Guido, 2010. "Dynamic Econometric Testing of Climate Change and of its Causes," MPRA Paper 23600, University Library of Munich, Germany.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anatolyev, Stanislav, 2012. "Inference in regression models with many regressors," Journal of Econometrics, Elsevier, vol. 170(2), pages 368-382.
    2. Yoonseok Lee & Ryo Okui, 2009. "A Specification Test for Instrumental Variables Regression with Many Instruments," Cowles Foundation Discussion Papers 1741, Cowles Foundation for Research in Economics, Yale University.
    3. Chirok Han & Peter C. B. Phillips, 2006. "GMM with Many Moment Conditions," Econometrica, Econometric Society, vol. 74(1), pages 147-192, January.
    4. Mardi Dungey & Vitali Alexeev & Jing Tian & Alastair R. Hall, 2015. "Econometricians Have Their Moments: GMM at 32," The Economic Record, The Economic Society of Australia, vol. 91, pages 1-24, June.
    5. Alastair R. Hall, 2015. "Econometricians Have Their Moments: GMM at 32," The Economic Record, The Economic Society of Australia, vol. 91(S1), pages 1-24, June.
    6. Whitney K. Newey & Frank Windmeijer, 2005. "GMM with many weak moment conditions," CeMMAP working papers CWP18/05, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    7. Shi, Zhentao, 2016. "Econometric estimation with high-dimensional moment equalities," Journal of Econometrics, Elsevier, vol. 195(1), pages 104-119.
    8. Crudu, Federico & Mellace, Giovanni & Sándor, Zsolt, 2021. "Inference In Instrumental Variable Models With Heteroskedasticity And Many Instruments," Econometric Theory, Cambridge University Press, vol. 37(2), pages 281-310, April.
    9. Calhoun, Gray, 2011. "Hypothesis testing in linear regression when k/n is large," Journal of Econometrics, Elsevier, vol. 165(2), pages 163-174.
    10. Chao, John C. & Swanson, Norman R. & Hausman, Jerry A. & Newey, Whitney K. & Woutersen, Tiemen, 2012. "Asymptotic Distribution Of Jive In A Heteroskedastic Iv Regression With Many Instruments," Econometric Theory, Cambridge University Press, vol. 28(1), pages 42-86, February.
    11. Carrasco, Marine & Tchuente, Guy, 2015. "Regularized LIML for many instruments," Journal of Econometrics, Elsevier, vol. 186(2), pages 427-442.
    12. John C. Chao & Norman R. Swanson, 2003. "Asymptotic Normality of Single-Equation Estimators for the Case with a Large Number of Weak Instruments," Departmental Working Papers 200312, Rutgers University, Department of Economics.
    13. Carrasco, Marine, 2012. "A regularization approach to the many instruments problem," Journal of Econometrics, Elsevier, vol. 170(2), pages 383-398.
    14. Bekker, Paul A. & Crudu, Federico, 2015. "Jackknife instrumental variable estimation with heteroskedasticity," Journal of Econometrics, Elsevier, vol. 185(2), pages 332-342.
    15. Michal Kolesár & Raj Chetty & John Friedman & Edward Glaeser & Guido W. Imbens, 2015. "Identification and Inference With Many Invalid Instruments," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(4), pages 474-484, October.
    16. Kohtaro Hitomi & Masamune Iwasawa & Yoshihiko Nishiyama, 2018. "Rate Optimal Specification Test When the Number of Instruments is Large," KIER Working Papers 986, Kyoto University, Institute of Economic Research.
    17. Norman R. Swanson & John C. Chao, 2004. "Estimation and Testing Using Jackknife IV in Heteroskedastic Regressions with Many Weak Instruments," Econometric Society 2004 Far Eastern Meetings 668, Econometric Society.
    18. Horowitz, Joel L., 2021. "Bounding the difference between true and nominal rejection probabilities in tests of hypotheses about instrumental variables models," Journal of Econometrics, Elsevier, vol. 222(2), pages 1057-1082.
    19. Dakyung Seong, 2022. "Binary response model with many weak instruments," Papers 2201.04811, arXiv.org, revised Feb 2022.
    20. Paul A. Bekker & Jan van der Ploeg, 2000. "Instrumental Variable Estimation Based on Grouped Data," Econometric Society World Congress 2000 Contributed Papers 1862, Econometric Society.

    More about this item

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:27:y:2011:i:02:p:427-441_00. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://www.cambridge.org/ect .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Keith Waters (email available below). General contact details of provider: https://www.cambridge.org/ect .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.