IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Nets: Network Estimation for Time Series

  • Matteo Barigozzi
  • Christian Brownlees

This work proposes novel network analysis techniques for multivariate time series. We define the network of a multivariate time series as a graph where vertices denote the components of the process and edges denote non-zero long run partial correlations. We then introduce a two step lasso procedure, called nets, to estimate high-dimensional sparse Long Run Partial Correlation networks. This approach is based on a var approximation of the process and allows to decompose the long run linkages into the contribution of the dynamic and contemporaneous dependence relations of the system. The large sample properties of the estimator are analysed and we establish conditions for consistent selection and estimation of the non-zero long run partial correlations. The methodology is illustrated with an application to a panel of U.S. bluechips.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://research.barcelonagse.eu/tmp/working_papers/723.pdf
Download Restriction: no

Paper provided by Barcelona Graduate School of Economics in its series Working Papers with number 723.

as
in new window

Length:
Date of creation: Oct 2013
Date of revision:
Handle: RePEc:bge:wpaper:723
Contact details of provider: Postal: Ramon Trias Fargas, 25-27, 08005 Barcelona
Phone: +34 93 542-1222
Fax: +34 93 542-1223
Web page: http://www.barcelonagse.eu
Email:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. De Mol, Christine & Giannone, Domenico & Reichlin, Lucrezia, 2006. "Forecasting Using a Large Number of Predictors: Is Bayesian Regression a Valid Alternative to Principal Components?," CEPR Discussion Papers 5829, C.E.P.R. Discussion Papers.
  2. repec:eca:wpaper:2013/130530 is not listed on IDEAS
  3. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-62, April.
  4. Jianqing Fan & Yuan Liao & Martina Mincheva, 2013. "Large covariance estimation by thresholding principal orthogonal complements," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(4), pages 603-680, 09.
  5. Hautsch, Nikolaus & Schaumburg, Julia & Schienle, Melanie, 2014. "Forecasting systemic impact in financial networks," International Journal of Forecasting, Elsevier, vol. 30(3), pages 781-794.
  6. Mardi Dungey & Matteo Luciani & David Veredas, 2012. "Ranking Systemically Important Financial Institutions," Tinbergen Institute Discussion Papers 12-115/IV/DSF44, Tinbergen Institute.
  7. Jushan Bai, 2003. "Inferential Theory for Factor Models of Large Dimensions," Econometrica, Econometric Society, vol. 71(1), pages 135-171, January.
  8. Daron Acemoglu & Vasco Carvalho & Asuman Ozdaglar & Alireza Tahbaz-Salehi, 2011. "The network origins of aggregate fluctuations," Economics Working Papers 1291, Department of Economics and Business, Universitat Pompeu Fabra.
  9. Bai, Jushan & Liao, Yuan, 2012. "Efficient Estimation of Approximate Factor Models," MPRA Paper 41558, University Library of Munich, Germany.
  10. Ledoit, Olivier & Wolf, Michael, 2004. "A well-conditioned estimator for large-dimensional covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 88(2), pages 365-411, February.
  11. Newey, Whitney K & West, Kenneth D, 1987. "A Simple, Positive Semi-definite, Heteroskedasticity and Autocorrelation Consistent Covariance Matrix," Econometrica, Econometric Society, vol. 55(3), pages 703-08, May.
  12. Andrews, Donald W K & Monahan, J Christopher, 1992. "An Improved Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimator," Econometrica, Econometric Society, vol. 60(4), pages 953-66, July.
  13. Kock, Anders Bredahl & Callot, Laurent, 2015. "Oracle inequalities for high dimensional vector autoregressions," Journal of Econometrics, Elsevier, vol. 186(2), pages 325-344.
  14. Billio, Monica & Getmansky, Mila & Lo, Andrew W. & Pelizzon, Loriana, 2012. "Econometric measures of connectedness and systemic risk in the finance and insurance sectors," Journal of Financial Economics, Elsevier, vol. 104(3), pages 535-559.
  15. Peng, Jie & Wang, Pei & Zhou, Nengfeng & Zhu, Ji, 2009. "Partial Correlation Estimation by Joint Sparse Regression Models," Journal of the American Statistical Association, American Statistical Association, vol. 104(486), pages 735-746.
  16. Markus K. Brunnermeier & Martin Oehmke, 2012. "Bubbles, Financial Crises, and Systemic Risk," NBER Working Papers 18398, National Bureau of Economic Research, Inc.
  17. Francis X. Diebold & Kamil Yilmaz, 2011. "On the Network Topology of Variance Decompositions: Measuring the Connectedness of Financial Firms," Koç University-TUSIAD Economic Research Forum Working Papers 1124, Koc University-TUSIAD Economic Research Forum.
  18. Daron Acemoglu & Asuman Ozdaglar & Alireza Tahbaz-Salehi, 2013. "Systemic Risk and Stability in Financial Networks," NBER Working Papers 18727, National Bureau of Economic Research, Inc.
  19. Nikolaus Hautsch & Julia Schaumburg & Melanie Schienle, 2012. "Financial Network Systemic Risk Contributions," SFB 649 Discussion Papers SFB649DP2012-053, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
  20. MArcelo C. Medeiros & Eduardo F.Mendes, 2012. "Estimating High-Dimensional Time Series Models," Textos para discussão 602, Department of Economics PUC-Rio (Brazil).
  21. X. Freixas & B. Parigi & J-C. Rochet, 2000. "Systemic Risk, Interbank Relations and Liquidity Provision by theCentral Bank," DNB Staff Reports (discontinued) 47, Netherlands Central Bank.
  22. Eichler, Michael, 2007. "Granger causality and path diagrams for multivariate time series," Journal of Econometrics, Elsevier, vol. 137(2), pages 334-353, April.
  23. Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
  24. Anders Bredahl Kock, 2012. "On the Oracle Property of the Adaptive Lasso in Stationary and Nonstationary Autoregressions," CREATES Research Papers 2012-05, School of Economics and Management, University of Aarhus.
  25. Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2000. "The Generalized Dynamic-Factor Model: Identification And Estimation," The Review of Economics and Statistics, MIT Press, vol. 82(4), pages 540-554, November.
  26. repec:dgr:uvatin:2012115 is not listed on IDEAS
  27. repec:dgr:uvatin:20120115 is not listed on IDEAS
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:bge:wpaper:723. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Bruno Guallar)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.