IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1106.3915.html
   My bibliography  Save this paper

Large Vector Auto Regressions

Author

Listed:
  • Song Song
  • Peter J. Bickel

Abstract

One popular approach for nonstructural economic and financial forecasting is to include a large number of economic and financial variables, which has been shown to lead to significant improvements for forecasting, for example, by the dynamic factor models. A challenging issue is to determine which variables and (their) lags are relevant, especially when there is a mixture of serial correlation (temporal dynamics), high dimensional (spatial) dependence structure and moderate sample size (relative to dimensionality and lags). To this end, an \textit{integrated} solution that addresses these three challenges simultaneously is appealing. We study the large vector auto regressions here with three types of estimates. We treat each variable's own lags different from other variables' lags, distinguish various lags over time, and is able to select the variables and lags simultaneously. We first show the consequences of using Lasso type estimate directly for time series without considering the temporal dependence. In contrast, our proposed method can still produce an estimate as efficient as an \textit{oracle} under such scenarios. The tuning parameters are chosen via a data driven "rolling scheme" method to optimize the forecasting performance. A macroeconomic and financial forecasting problem is considered to illustrate its superiority over existing estimators.

Suggested Citation

  • Song Song & Peter J. Bickel, 2011. "Large Vector Auto Regressions," Papers 1106.3915, arXiv.org.
  • Handle: RePEc:arx:papers:1106.3915
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1106.3915
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
    2. Thomas Doan & Robert B. Litterman & Christopher A. Sims, 1983. "Forecasting and Conditional Projection Using Realistic Prior Distributions," NBER Working Papers 1202, National Bureau of Economic Research, Inc.
    3. Chudik, Alexander & Pesaran, M. Hashem, 2011. "Infinite-dimensional VARs and factor models," Journal of Econometrics, Elsevier, vol. 163(1), pages 4-22, July.
    4. Diebold, Francis X. & Li, Canlin, 2006. "Forecasting the term structure of government bond yields," Journal of Econometrics, Elsevier, vol. 130(2), pages 337-364, February.
    5. Christiano, Lawrence J. & Eichenbaum, Martin & Evans, Charles L., 1999. "Monetary policy shocks: What have we learned and to what end?," Handbook of Macroeconomics,in: J. B. Taylor & M. Woodford (ed.), Handbook of Macroeconomics, edition 1, volume 1, chapter 2, pages 65-148 Elsevier.
    6. Fengler, Matthias R. & Härdle, Wolfgang & Mammen, Enno, 2003. "Implied volatility string dynamics," SFB 373 Discussion Papers 2003,54, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    7. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fengler, Matthias R. & Gisler, Katja I.M., 2015. "A variance spillover analysis without covariances: What do we miss?," Journal of International Money and Finance, Elsevier, vol. 51(C), pages 174-195.
    2. Jorge A Chan-Lau, 2017. "Lasso Regressions and Forecasting Models in Applied Stress Testing," IMF Working Papers 17/108, International Monetary Fund.
    3. Embaye, Weldensie T. & Zereyesus, Yacob A., 2017. "Measuring the value of housing services in household surveys: an application of machine learning approach," 2017 Annual Meeting, February 4-7, 2017, Mobile, Alabama 252851, Southern Agricultural Economics Association.
    4. Kock, Anders Bredahl & Callot, Laurent, 2015. "Oracle inequalities for high dimensional vector autoregressions," Journal of Econometrics, Elsevier, vol. 186(2), pages 325-344.
    5. Gefang, Deborah, 2014. "Bayesian doubly adaptive elastic-net Lasso for VAR shrinkage," International Journal of Forecasting, Elsevier, vol. 30(1), pages 1-11.
    6. Song Song & Wolfgang K. Härdle & Ya'acov Ritov, 2014. "Generalized dynamic semi‐parametric factor models for high‐dimensional non‐stationary time series," Econometrics Journal, Royal Economic Society, vol. 17(2), pages 101-131, June.
    7. repec:eee:intfor:v:33:y:2017:i:3:p:627-651 is not listed on IDEAS
    8. Song Song, 2011. "Dynamic Large Spatial Covariance Matrix Estimation in Application to Semiparametric Model Construction via Variable Clustering: the SCE approach," Papers 1106.3921, arXiv.org, revised Jun 2011.
    9. Daniel Felix Ahelegbey & Monica Billio & Roberto Casarin, 2016. "Sparse Graphical Vector Autoregression: A Bayesian Approach," Annals of Economics and Statistics, GENES, issue 123-124, pages 333-361.
    10. Kascha, Christian & Trenkler, Carsten, 2015. "Forecasting VARs, model selection, and shrinkage," Working Papers 15-07, University of Mannheim, Department of Economics.
    11. Li, Jiahan & Chen, Weiye, 2014. "Forecasting macroeconomic time series: LASSO-based approaches and their forecast combinations with dynamic factor models," International Journal of Forecasting, Elsevier, vol. 30(4), pages 996-1015.
    12. Song, Song & Zhu, Lixing, 2016. "Group-wise semiparametric modeling: A SCSE approach," Journal of Multivariate Analysis, Elsevier, vol. 152(C), pages 1-14.
    13. Jorge A Chan-Lau, 2017. "Variance Decomposition Networks; Potential Pitfalls and a Simple Solution," IMF Working Papers 17/107, International Monetary Fund.
    14. Chang, Jinyuan & Guo, Bin & Yao, Qiwei, 2015. "High dimensional stochastic regression with latent factors, endogeneity and nonlinearity," LSE Research Online Documents on Economics 61886, London School of Economics and Political Science, LSE Library.
    15. Chang, Jinyuan & Guo, Bin & Yao, Qiwei, 2015. "High dimensional stochastic regression with latent factors, endogeneity and nonlinearity," Journal of Econometrics, Elsevier, vol. 189(2), pages 297-312.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1106.3915. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.