IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Forecasting Covariance Matrices: A Mixed Frequency Approach

  • Roxana Halbleib

    ()

    (European Center for Advanced Research in Economics and Statistics (ECARES), Université libre de Bruxelles, Solvay Brussels School of Economics and Management and CoFE)

  • Valeri Voev

    ()

    (School of Economics and Management, Aarhus University and CREATES)

This paper proposes a new method for forecasting covariance matrices of financial returns. The model mixes volatility forecasts from a dynamic model of daily realized volatilities estimated with high-frequency data with correlation forecasts based on daily data. This new approach allows for flexible dependence patterns for volatilities and correlations, and can be applied to covariance matrices of large dimensions. The separate modeling of volatility and correlation forecasts considerably reduces the estimation and measurement error implied by the joint estimation and modeling of covariance matrix dynamics. Our empirical results show that the new mixing approach provides superior forecasts compared to multivariate volatility specifications using single sources of information.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: ftp://ftp.econ.au.dk/creates/rp/11/rp11_03.pdf
Download Restriction: no

Paper provided by School of Economics and Management, University of Aarhus in its series CREATES Research Papers with number 2011-03.

as
in new window

Length: 37
Date of creation: 18 Jan 2011
Date of revision:
Handle: RePEc:aah:create:2011-03
Contact details of provider: Web page: http://www.econ.au.dk/afn/

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Asger Lunde & Peter Reinhard Hansen, 2001. "A Forecast Comparison of Volatility Models: Does Anything Beat a GARCH(1,1)?," Working Papers 2001-04, Brown University, Department of Economics.
  2. Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-50, July.
  3. BAUWENS, Luc & LAURENT, Sébastien & ROMBOUTS, Jeroen, 2003. "Multivariate GARCH models: a survey," CORE Discussion Papers 2003031, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  4. Ole E. Barndorff-Nielsen & Peter Reinhard Hansen & Asger Lunde & Neil Shephard, 2008. "Multivariate realised kernels: consistent positive semi-definite estimators of the covariation of equity prices with noise and non-synchronous trading," CREATES Research Papers 2008-63, School of Economics and Management, University of Aarhus.
  5. Tim Bollerslev, 1986. "Generalized autoregressive conditional heteroskedasticity," EERI Research Paper Series EERI RP 1986/01, Economics and Econometrics Research Institute (EERI), Brussels.
  6. Hafner, Christian M. & Reznikova, Olga, 2012. "On the estimation of dynamic conditional correlation models," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3533-3545.
  7. Peter Reinhard Hansen & Zhuo (Albert) Huang & Howard Howan Shek, . "Realized GARCH: A Complete Model of Returns and Realized Measures of Volatility," CREATES Research Papers 2010-13, School of Economics and Management, University of Aarhus.
  8. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2001. "Modeling and Forecasting Realized Volatility," NBER Working Papers 8160, National Bureau of Economic Research, Inc.
  9. Helmut Luetkepohl & Fang Xu, 2009. "The Role of the Log Transformation in Forecasting Economic Variables," CESifo Working Paper Series 2591, CESifo Group Munich.
  10. Gregory H. Bauer & Keith Vorkink, 2007. "Multivariate Realized Stock Market Volatility," Working Papers 07-20, Bank of Canada.
  11. Ingmar Nolte & Valeri Voev, 2011. "Least Squares Inference on Integrated Volatility and the Relationship Between Efficient Prices and Noise," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(1), pages 94-108, April.
  12. Neil Shephard & Kevin Sheppard, 2009. "Realising the future: forecasting with high frequency based volatility (HEAVY) models," Economics Series Working Papers 438, University of Oxford, Department of Economics.
  13. Ingmar Nolte & Valeri Voev, 2007. "Estimating High-Frequency Based (Co-) Variances: A Unified Approach," CoFE Discussion Paper 07-07, Center of Finance and Econometrics, University of Konstanz.
  14. Fulvio Corsi & Francesco Audrino, 2008. "Modeling Tick-by-Tick Realized Correlations," University of St. Gallen Department of Economics working paper series 2008 2008-05, Department of Economics, University of St. Gallen.
  15. Nikolaus Hautsch & Lada M. Kyj & Roel C.A. Oomen, 2009. "A blocking and regularization approach to high dimensional realized covariance estimation," SFB 649 Discussion Papers SFB649DP2009-049, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
  16. Kim Christensen & Silja Kinnebrock & Mark Podolskij, 2009. "Pre-averaging estimators of the ex-post covariance matrix in noisy diffusion models with non-synchronous data," CREATES Research Papers 2009-45, School of Economics and Management, University of Aarhus.
  17. Diaa Noureldin & Neil Shephard & Kevin Sheppard, 2011. "Multivariate High-Frequency-Based Volatility (HEAVY) Models," Economics Papers 2011-W01, Economics Group, Nuffield College, University of Oxford.
  18. Peter Reinhard Hansen & Asger Lunde & Valeri Voev, 2012. "Realized Beta GARCH: A Multivariate GARCH Model with Realized Measures of Volatility and Covolatility," Global COE Hi-Stat Discussion Paper Series gd12-269, Institute of Economic Research, Hitotsubashi University.
  19. Robert F. Engle & Giampiero M. Gallo, 2003. "A Multiple Indicators Model for Volatility Using Intra-Daily Data," NBER Working Papers 10117, National Bureau of Economic Research, Inc.
  20. Nikolaus Hautsch & Lada M. Kyj & Peter Malec, 2011. "The Merit of High-Frequency Data in Portfolio Allocation," SFB 649 Discussion Papers SFB649DP2011-059, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
  21. Peter R. Hansen & Asger Lunde & James M. Nason, 2011. "The Model Confidence Set," Econometrica, Econometric Society, vol. 79(2), pages 453-497, 03.
  22. Patton, Andrew J., 2011. "Volatility forecast comparison using imperfect volatility proxies," Journal of Econometrics, Elsevier, vol. 160(1), pages 246-256, January.
  23. Giacomini, Raffaella & White, Halbert, 2003. "Tests of Conditional Predictive Ability," University of California at San Diego, Economics Working Paper Series qt5jk0j5jh, Department of Economics, UC San Diego.
  24. Ole E. Barndorff-Nielsen & Peter Reinhard Hansen & Asger Lunde & Neil Shephard, 2006. "Designing realised kernels to measure the ex-post variation of equity prices in the presence of noise," Economics Papers 2006-W03, Economics Group, Nuffield College, University of Oxford.
  25. Gourieroux, C. & Jasiak, J. & Sufana, R., 2009. "The Wishart Autoregressive process of multivariate stochastic volatility," Journal of Econometrics, Elsevier, vol. 150(2), pages 167-181, June.
  26. repec:oxf:wpaper:264 is not listed on IDEAS
  27. Roxana Chiriac & Valeri Voev, 2008. "Modelling and Forecasting Multivariate Realized Volatility," CoFE Discussion Paper 08-06, Center of Finance and Econometrics, University of Konstanz.
  28. Bauer, Gregory H. & Vorkink, Keith, 2011. "Forecasting multivariate realized stock market volatility," Journal of Econometrics, Elsevier, vol. 160(1), pages 93-101, January.
  29. O. E. Barndorff-Nielsen & P. Reinhard Hansen & A. Lunde & N. Shephard, 2009. "Realized kernels in practice: trades and quotes," Econometrics Journal, Royal Economic Society, vol. 12(3), pages C1-C32, November.
  30. Valeri Voev & Asger Lunde, 2007. "Integrated Covariance Estimation using High-frequency Data in the Presence of Noise," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 5(1), pages 68-104.
  31. BAUWENS, Luc & STORTI, Giuseppe & VIOLANTE, Francesco, 2012. "Dynamic conditional correlation models for realized covariance matrices," CORE Discussion Papers 2012060, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  32. Tse, Y K & Tsui, Albert K C, 2002. "A Multivariate Generalized Autoregressive Conditional Heteroscedasticity Model with Time-Varying Correlations," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 351-62, July.
  33. Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 7(2), pages 174-196, Spring.
  34. Colacito, Riccardo & Engle, Robert F. & Ghysels, Eric, 2011. "A component model for dynamic correlations," Journal of Econometrics, Elsevier, vol. 164(1), pages 45-59, September.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:aah:create:2011-03. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ()

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.