IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

The merit of high-frequency data in portfolio allocation

  • Hautsch, Nikolaus
  • Kyj, Lada M.
  • Malec, Peter

This paper addresses the open debate about the usefulness of high-frequency (HF) data in large-scale portfolio allocation. Daily covariances are estimated based on HF data of the S&P 500 universe employing a blocked realized kernel estimator. We propose forecasting covariance matrices using a multi-scale spectral decomposition where volatilities, correlation eigenvalues and eigenvectors evolve on different frequencies. In an extensive out-of-sample forecasting study, we show that the proposed approach yields less risky and more diversified portfolio allocations as prevailing methods employing daily data. These performance gains hold over longer horizons than previous studies have shown.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by Center for Financial Studies (CFS) in its series CFS Working Paper Series with number 2011/24.

in new window

Date of creation: 2011
Date of revision:
Handle: RePEc:zbw:cfswop:201124
Contact details of provider: Postal: House of Finance, Grüneburgplatz 1, HPF H5, D-60323 Frankfurt am Main
Phone: +49 (0)69 798-30050
Fax: +49 (0)69 798-30077
Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Ole E. Barndorff-Nielsen & Shephard, 2002. "Econometric analysis of realized volatility and its use in estimating stochastic volatility models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(2), pages 253-280.
  2. Fama, Eugene F & French, Kenneth R, 1996. " Multifactor Explanations of Asset Pricing Anomalies," Journal of Finance, American Finance Association, vol. 51(1), pages 55-84, March.
  3. Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 7(2), pages 174-196, Spring.
  4. Ledoit, Olivier & Wolf, Michael, 2003. "Improved estimation of the covariance matrix of stock returns with an application to portfolio selection," Journal of Empirical Finance, Elsevier, vol. 10(5), pages 603-621, December.
  5. Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2003. "The Generalized Dynamic Factor Model. One-Sided Estimation and Forecasting," LEM Papers Series 2003/13, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
  6. Ross, Stephen A., 1976. "The arbitrage theory of capital asset pricing," Journal of Economic Theory, Elsevier, vol. 13(3), pages 341-360, December.
  7. Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2006. "Predicting volatility: getting the most out of return data sampled at different frequencies," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 59-95.
  8. Roxana Halbleib & Valeri Voev, 2012. "Forecasting Covariance Matrices: A Mixed Frequency Approach," Working Paper Series of the Department of Economics, University of Konstanz 2012-30, Department of Economics, University of Konstanz.
  9. Peter R. Hansen & Asger Lunde & Valeri Voev, 2010. "Realized Beta GARCH: A Multivariate GARCH Model with Realized Measures of Volatility and CoVolatility," CREATES Research Papers 2010-74, School of Economics and Management, University of Aarhus.
  10. Pagan, A.R. & Schwert, G.W., 1989. "Alternative Models For Conditional Stock Volatility," Papers 89-02, Rochester, Business - General.
  11. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2001. "Modeling and Forecasting Realized Volatility," Center for Financial Institutions Working Papers 01-01, Wharton School Center for Financial Institutions, University of Pennsylvania.
  12. Ravi Jagannathan & Tongshu Ma, 2002. "Risk Reduction in Large Portfolios: Why Imposing the Wrong Constraints Helps," NBER Working Papers 8922, National Bureau of Economic Research, Inc.
  13. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
  14. Eichler Michael & Motta Giovanni & Sachs Rainer von, 2009. "Fitting dynamic factor models to non-stationary time series," Research Memorandum 002, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
  15. Bauer, Gregory H. & Vorkink, Keith, 2011. "Forecasting multivariate realized stock market volatility," Journal of Econometrics, Elsevier, vol. 160(1), pages 93-101, January.
  16. Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-50, July.
  17. Michiel de Pooter & Martin Martens & Dick van Dijk, 2008. "Predicting the Daily Covariance Matrix for S&P 100 Stocks Using Intraday Data—But Which Frequency to Use?," Econometric Reviews, Taylor & Francis Journals, vol. 27(1-3), pages 199-229.
  18. Peter Reinhard Hansen & Zhuo Huang & Howard Howan Shek, 2012. "Realized GARCH: a joint model for returns and realized measures of volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(6), pages 877-906, 09.
  19. Colacito, Riccardo & Engle, Robert F. & Ghysels, Eric, 2011. "A component model for dynamic correlations," Journal of Econometrics, Elsevier, vol. 164(1), pages 45-59, September.
  20. Bollerslev, Tim & Zhang, Benjamin Y. B., 2003. "Measuring and modeling systematic risk in factor pricing models using high-frequency data," Journal of Empirical Finance, Elsevier, vol. 10(5), pages 533-558, December.
  21. Hansen, Peter R. & Lunde, Asger, 2014. "Estimating The Persistence And The Autocorrelation Function Of A Time Series That Is Measured With Error," Econometric Theory, Cambridge University Press, vol. 30(01), pages 60-93, February.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:zbw:cfswop:201124. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (ZBW - German National Library of Economics)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.