IDEAS home Printed from https://ideas.repec.org/p/cdf/wpaper/2019-5.html

DCC and DECO-HEAVY: a multivariate GARCH model based on realized variances and correlations

Author

Listed:

Abstract

This paper introduces the scalar DCC-HEAVY and DECO-HEAVY models for conditional variances and correlations of daily returns based on measures of realized variances and correlations built from intraday data. Formulas for multi-step forecasts of conditional variances and correlations are provided. Asymmetric versions of the models are developed. An empirical study shows that in terms of forecasts the new HEAVY models outperform the BEKKHEAVY model based on realized covariances, and the BEKK, DCC and DECO multivariate GARCH models based exclusively on daily data.

Suggested Citation

  • Bauwens, Luc & Xu, Yongdeng, 2019. "DCC and DECO-HEAVY: a multivariate GARCH model based on realized variances and correlations," Cardiff Economics Working Papers E2019/5, Cardiff University, Cardiff Business School, Economics Section, revised Aug 2021.
  • Handle: RePEc:cdf:wpaper:2019/5
    as

    Download full text from publisher

    File URL: http://carbsecon.com/wp/E2019_5.pdf
    File Function: Main Text
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. is not listed on IDEAS
    2. Samuel Tabot Enow, 2025. "Statistical properties, dynamic conditional correlation, and scaling analysis: evidence from international financial markets high-frequency data," International Journal of Research in Business and Social Science (2147-4478), Center for the Strategic Studies in Business and Finance, vol. 14(4), pages 251-255, June.
    3. Honig, Igor & Kircher, Felix, 2025. "Large dynamic covariance matrices and portfolio selection with a heterogeneous autoregressive model," Journal of Banking & Finance, Elsevier, vol. 178(C).
    4. Bauwens, Luc & Dzuverovic, Emilija & Hafner, Christian, 2024. "Asymmetric Models for Realized Covariances," LIDAM Discussion Papers CORE 2024024, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    5. Virbickaitė, Audronė & Lopes, Hedibert F. & Zaharieva, Martina Danielova, 2025. "Multivariate dynamic mixed-frequency density pooling for financial forecasting," International Journal of Forecasting, Elsevier, vol. 41(3), pages 1184-1198.
    6. Yongdeng Xu, 2025. "The exponential HEAVY model: an improved approach to volatility modeling and forecasting," Review of Quantitative Finance and Accounting, Springer, vol. 65(2), pages 727-748, August.
    7. Xu, Yongdeng & Guan, Bo & Lu, Wenna & Heravi, Saeed, 2024. "Macroeconomic shocks and volatility spillovers between stock, bond, gold and crude oil markets," Energy Economics, Elsevier, vol. 136(C).
    8. Bauwens, Luc & Xu, Yongdeng, 2025. "The contribution of realized variance–covariance models to the economic value of volatility timing," International Journal of Forecasting, Elsevier, vol. 41(3), pages 1165-1183.
    9. Xu, Yongdeng, 2024. "Extended multivariate EGARCH model: A model for zero†return and negative spillovers," Cardiff Economics Working Papers E2024/24, Cardiff University, Cardiff Business School, Economics Section.
    10. Bauwens, Luc & Otranto, Edoardo, 2023. "Realized Covariance Models with Time-varying Parameters and Spillover Effects," LIDAM Discussion Papers CORE 2023019, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdf:wpaper:2019/5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Yongdeng Xu (email available below). General contact details of provider: https://edirc.repec.org/data/ecscfuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.