IDEAS home Printed from https://ideas.repec.org/p/sep/wpaper/3_234.html
   My bibliography  Save this paper

A Dynamic Component Model for Forecasting High-Dimensional Realized Covariances Matrices

Author

Listed:
  • Luc Bauwens

    (Universite Côte d'Azur, SKEMA, France.)

  • Manuela Braione

    (Universite Catholique de Louvain,CORE, B-1348 Louvain-La-Neuve, Belgium.)

  • Giuseppe Storti

    (Dipartimento di Scienze Economiche e Statistiche (DISES), Università degli Studi di Salerno)

Abstract

The Multiplicative MIDAS Realized DCC (MMReDCC) model simultaneously accounts for short and long term dynamics in the conditional (co)volatilities of asset returns, in line with the empirical evidence suggesting that their level is changing over time as a function of economic conditions. Herein the applicability of the model is improved along two directions. First, by proposing an algorithm that relies on the maximization of an iteratively re-computed moment-based pro_le likelihood function and keeps estimation feasible in large dimensions by mitigating the incidental parameter problem. Second, by illustrating a conditional bootstrap procedure to generate multi-step ahead predictions from the model. In an empirical application on a dataset of forty-six equities, the MMReDCC model is found to statistically outperform the selected benchmarks in terms of in-sample _t as well as in terms of out-of-sample covariance predictions. The latter are mostly significant in periods of high market volatility.

Suggested Citation

  • Luc Bauwens & Manuela Braione & Giuseppe Storti, 2020. "A Dynamic Component Model for Forecasting High-Dimensional Realized Covariances Matrices," Working Papers 3_234, Dipartimento di Scienze Economiche e Statistiche, Università degli Studi di Salerno, revised Jul 2020.
  • Handle: RePEc:sep:wpaper:3_234
    as

    Download full text from publisher

    File URL: https://www.dises.unisa.it/RePEc/sep/wpaper/3_234.pdf
    File Function: First version, 2016
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. repec:hal:journl:peer-00815564 is not listed on IDEAS
    2. Nikolaus Hautsch & Lada M. Kyj & Peter Malec, 2015. "Do High‐Frequency Data Improve High‐Dimensional Portfolio Allocations?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(2), pages 263-290, March.
    3. Sébastien Laurent & Jeroen V. K. Rombouts & Francesco Violante, 2012. "On the forecasting accuracy of multivariate GARCH models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(6), pages 934-955, September.
    4. Clements, Michael P. & Smith, Jeremy, 1997. "The performance of alternative forecasting methods for SETAR models," International Journal of Forecasting, Elsevier, vol. 13(4), pages 463-475, December.
    5. Cubadda, Gianluca & Guardabascio, Barbara & Hecq, Alain, 2017. "A vector heterogeneous autoregressive index model for realized volatility measures," International Journal of Forecasting, Elsevier, vol. 33(2), pages 337-344.
    6. Raffaella Giacomini & Halbert White, 2006. "Tests of Conditional Predictive Ability," Econometrica, Econometric Society, vol. 74(6), pages 1545-1578, November.
    7. Engle, Robert F. & Kroner, Kenneth F., 1995. "Multivariate Simultaneous Generalized ARCH," Econometric Theory, Cambridge University Press, vol. 11(1), pages 122-150, February.
    8. Rasmus S. Pedersen & Anders Rahbek, 2014. "Multivariate variance targeting in the BEKK–GARCH model," Econometrics Journal, Royal Economic Society, vol. 17(1), pages 24-55, February.
    9. Neil Shephard & Kevin Sheppard, 2010. "Realising the future: forecasting with high-frequency-based volatility (HEAVY) models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(2), pages 197-231.
    10. Barndorff-Nielsen, Ole E. & Hansen, Peter Reinhard & Lunde, Asger & Shephard, Neil, 2011. "Multivariate realised kernels: Consistent positive semi-definite estimators of the covariation of equity prices with noise and non-synchronous trading," Journal of Econometrics, Elsevier, vol. 162(2), pages 149-169, June.
    11. repec:taf:jnlbes:v:30:y:2012:i:2:p:212-228 is not listed on IDEAS
    12. BAUWENS, Luc & STORTI, Giuseppe & VIOLANTE, Francesco, 2012. "Dynamic conditional correlation models for realized covariance matrices," LIDAM Discussion Papers CORE 2012060, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    13. Neil Shephard & Ole E. Barndorff-Nielsen & University of Aarhus, 2001. "Normal Modified Stable Processes," Economics Series Working Papers 72, University of Oxford, Department of Economics.
    14. Xin Jin & John M. Maheu, 2013. "Modeling Realized Covariances and Returns," Journal of Financial Econometrics, Oxford University Press, vol. 11(2), pages 335-369, March.
    15. Hafner, Christian M. & Linton, Oliver, 2010. "Efficient estimation of a multivariate multiplicative volatility model," Journal of Econometrics, Elsevier, vol. 159(1), pages 55-73, November.
    16. Christian Francq & Lajos Horváth, 2011. "Merits and Drawbacks of Variance Targeting in GARCH Models," Journal of Financial Econometrics, Oxford University Press, vol. 9(4), pages 619-656.
    17. Roxana Chiriac & Valeri Voev, 2011. "Modelling and forecasting multivariate realized volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 26(6), pages 922-947, September.
    18. Luc Bauwens & Manuela Braione & Giuseppe Storti, 2016. "Forecasting Comparison of Long Term Component Dynamic Models for Realized Covariance Matrices," Annals of Economics and Statistics, GENES, issue 123-124, pages 103-134.
    19. Pascual, Lorenzo & Romo, Juan & Ruiz, Esther, 2006. "Bootstrap prediction for returns and volatilities in GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 50(9), pages 2293-2312, May.
    20. Luc Bauwens & Christian M. Hafner & Diane Pierret, 2013. "Multivariate Volatility Modeling Of Electricity Futures," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(5), pages 743-761, August.
    21. Diaa Noureldin & Neil Shephard & Kevin Sheppard, 2012. "Multivariate high‐frequency‐based volatility (HEAVY) models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(6), pages 907-933, September.
    22. Golosnoy, Vasyl & Gribisch, Bastian & Liesenfeld, Roman, 2012. "The conditional autoregressive Wishart model for multivariate stock market volatility," Journal of Econometrics, Elsevier, vol. 167(1), pages 211-223.
    23. Bauwens, Luc & Grigoryeva, Lyudmila & Ortega, Juan-Pablo, 2016. "Estimation and empirical performance of non-scalar dynamic conditional correlation models," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 17-36.
    24. Laurent, Sébastien & Rombouts, Jeroen V.K. & Violante, Francesco, 2013. "On loss functions and ranking forecasting performances of multivariate volatility models," Journal of Econometrics, Elsevier, vol. 173(1), pages 1-10.
    25. Cavit Pakel & Neil Shephard & Kevin Sheppard & Robert F. Engle, 2021. "Fitting Vast Dimensional Time-Varying Covariance Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(3), pages 652-668, July.
    26. Gourieroux, C. & Jasiak, J. & Sufana, R., 2009. "The Wishart Autoregressive process of multivariate stochastic volatility," Journal of Econometrics, Elsevier, vol. 150(2), pages 167-181, June.
    27. Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-350, July.
    28. Eric Ghysels & Arthur Sinko & Rossen Valkanov, 2007. "MIDAS Regressions: Further Results and New Directions," Econometric Reviews, Taylor & Francis Journals, vol. 26(1), pages 53-90.
    29. Andersen, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Ebens, Heiko, 2001. "The distribution of realized stock return volatility," Journal of Financial Economics, Elsevier, vol. 61(1), pages 43-76, July.
    30. Gian Piero Aielli, 2013. "Dynamic Conditional Correlation: On Properties and Estimation," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(3), pages 282-299, July.
    31. Colacito, Riccardo & Engle, Robert F. & Ghysels, Eric, 2011. "A component model for dynamic correlations," Journal of Econometrics, Elsevier, vol. 164(1), pages 45-59, September.
    32. Fresoli, Diego & Ruiz, Esther & Pascual, Lorenzo, 2015. "Bootstrap multi-step forecasts of non-Gaussian VAR models," International Journal of Forecasting, Elsevier, vol. 31(3), pages 834-848.
    33. Boudt, Kris & Laurent, Sébastien & Lunde, Asger & Quaedvlieg, Rogier & Sauri, Orimar, 2017. "Positive semidefinite integrated covariance estimation, factorizations and asynchronicity," Journal of Econometrics, Elsevier, vol. 196(2), pages 347-367.
    34. Patton, Andrew J., 2011. "Volatility forecast comparison using imperfect volatility proxies," Journal of Econometrics, Elsevier, vol. 160(1), pages 246-256, January.
    35. repec:hal:journl:peer-00732539 is not listed on IDEAS
    36. Bollerslev, Tim, 1990. "Modelling the Coherence in Short-run Nominal Exchange Rates: A Multivariate Generalized ARCH Model," The Review of Economics and Statistics, MIT Press, vol. 72(3), pages 498-505, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Golosnoy, Vasyl & Gribisch, Bastian & Seifert, Miriam Isabel, 2019. "Exponential smoothing of realized portfolio weights," Journal of Empirical Finance, Elsevier, vol. 53(C), pages 222-237.
    2. Braione, Manuela, 2016. "A time-varying long run HEAVY model," Statistics & Probability Letters, Elsevier, vol. 119(C), pages 36-44.
    3. Naimoli, Antonio & Storti, Giuseppe, 2019. "Heterogeneous component multiplicative error models for forecasting trading volumes," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1332-1355.
    4. Xin Jin & John M. Maheu & Qiao Yang, 2019. "Bayesian parametric and semiparametric factor models for large realized covariance matrices," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(5), pages 641-660, August.
    5. Bollerslev, Tim & Patton, Andrew J. & Quaedvlieg, Rogier, 2020. "Multivariate leverage effects and realized semicovariance GARCH models," Journal of Econometrics, Elsevier, vol. 217(2), pages 411-430.
    6. Jian, Zhihong & Deng, Pingjun & Zhu, Zhican, 2018. "High-dimensional covariance forecasting based on principal component analysis of high-frequency data," Economic Modelling, Elsevier, vol. 75(C), pages 422-431.
    7. Javed, Farrukh & Loperfido, Nicola & Mazur, Stepan, 2024. "Edgeworth expansions for multivariate random sums," Econometrics and Statistics, Elsevier, vol. 31(C), pages 66-80.
    8. Golosnoy, Vasyl & Gribisch, Bastian, 2022. "Modeling and forecasting realized portfolio weights," Journal of Banking & Finance, Elsevier, vol. 138(C).
    9. Amendola, Alessandra & Candila, Vincenzo & Gallo, Giampiero M., 2021. "Choosing the frequency of volatility components within the Double Asymmetric GARCH–MIDAS–X model," Econometrics and Statistics, Elsevier, vol. 20(C), pages 12-28.
    10. Jan Patrick Hartkopf, 2023. "Composite forecasting of vast-dimensional realized covariance matrices using factor state-space models," Empirical Economics, Springer, vol. 64(1), pages 393-436, January.
    11. Diego Fresoli, 2022. "Bootstrap VAR forecasts: The effect of model uncertainties," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(2), pages 279-293, March.
    12. Vassallo, Danilo & Buccheri, Giuseppe & Corsi, Fulvio, 2021. "A DCC-type approach for realized covariance modeling with score-driven dynamics," International Journal of Forecasting, Elsevier, vol. 37(2), pages 569-586.
    13. Conrad, Christian & Stuermer, Karin, 2017. "On the economic determinants of optimal stock-bond portfolios: international evidence," Working Papers 0636, University of Heidelberg, Department of Economics.
    14. Qifa Xu & Junqing Zuo & Cuixia Jiang & Yaoyao He, 2021. "A large constrained time‐varying portfolio selection model with DCC‐MIDAS: Evidence from Chinese stock market," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(3), pages 3417-3435, July.
    15. Amendola, Alessandra & Candila, Vincenzo & Gallo, Giampiero M., 2019. "On the asymmetric impact of macro–variables on volatility," Economic Modelling, Elsevier, vol. 76(C), pages 135-152.
    16. Hartkopf, Jan Patrick & Reh, Laura, 2023. "Challenging golden standards in EWMA smoothing parameter calibration based on realized covariance measures," Finance Research Letters, Elsevier, vol. 56(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. BAUWENS, Luc & BRAIONE, Manuela & STORTI, Giuseppe, 2016. "Multiplicative Conditional Correlation Models for Realized Covariance Matrices," LIDAM Discussion Papers CORE 2016041, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. de Almeida, Daniel & Hotta, Luiz K. & Ruiz, Esther, 2018. "MGARCH models: Trade-off between feasibility and flexibility," International Journal of Forecasting, Elsevier, vol. 34(1), pages 45-63.
    3. Dhaene, Geert & Wu, Jianbin, 2020. "Incorporating overnight and intraday returns into multivariate GARCH volatility models," Journal of Econometrics, Elsevier, vol. 217(2), pages 471-495.
    4. Bauwens, Luc & Xu, Yongdeng, 2023. "DCC- and DECO-HEAVY: Multivariate GARCH models based on realized variances and correlations," International Journal of Forecasting, Elsevier, vol. 39(2), pages 938-955.
    5. BAUWENS Luc, & XU Yongdeng,, 2019. "DCC-HEAVY: A multivariate GARCH model based on realized variances and correlations," LIDAM Discussion Papers CORE 2019025, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    6. Andrea BUCCI, 2017. "Forecasting Realized Volatility A Review," Journal of Advanced Studies in Finance, ASERS Publishing, vol. 8(2), pages 94-138.
    7. Roxana Halbleib & Valeri Voev, 2016. "Forecasting Covariance Matrices: A Mixed Approach," Journal of Financial Econometrics, Oxford University Press, vol. 14(2), pages 383-417.
    8. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2013. "Financial Risk Measurement for Financial Risk Management," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1127-1220, Elsevier.
    9. Roxana Halbleib & Valeri Voev, 2011. "Forecasting Covariance Matrices: A Mixed Frequency Approach," CREATES Research Papers 2011-03, Department of Economics and Business Economics, Aarhus University.
    10. Bollerslev, Tim & Patton, Andrew J. & Quaedvlieg, Rogier, 2020. "Multivariate leverage effects and realized semicovariance GARCH models," Journal of Econometrics, Elsevier, vol. 217(2), pages 411-430.
    11. Varneskov, Rasmus & Voev, Valeri, 2013. "The role of realized ex-post covariance measures and dynamic model choice on the quality of covariance forecasts," Journal of Empirical Finance, Elsevier, vol. 20(C), pages 83-95.
    12. Fengler, Matthias R. & Okhrin, Ostap, 2016. "Managing risk with a realized copula parameter," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 131-152.
    13. Kevin Sheppard & Wen Xu, 2019. "Factor High-Frequency-Based Volatility (HEAVY) Models," Journal of Financial Econometrics, Oxford University Press, vol. 17(1), pages 33-65.
    14. Vassallo, Danilo & Buccheri, Giuseppe & Corsi, Fulvio, 2021. "A DCC-type approach for realized covariance modeling with score-driven dynamics," International Journal of Forecasting, Elsevier, vol. 37(2), pages 569-586.
    15. repec:hum:wpaper:sfb649dp2012-034 is not listed on IDEAS
    16. Symitsi, Efthymia & Symeonidis, Lazaros & Kourtis, Apostolos & Markellos, Raphael, 2018. "Covariance forecasting in equity markets," Journal of Banking & Finance, Elsevier, vol. 96(C), pages 153-168.
    17. João F. Caldeira & Guilherme V. Moura & Francisco J. Nogales & André A. P. Santos, 2017. "Combining Multivariate Volatility Forecasts: An Economic-Based Approach," Journal of Financial Econometrics, Oxford University Press, vol. 15(2), pages 247-285.
    18. Geert Dhaene & Piet Sercu & Jianbin Wu, 2022. "Volatility spillovers: A sparse multivariate GARCH approach with an application to commodity markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(5), pages 868-887, May.
    19. Jiayuan Zhou & Feiyu Jiang & Ke Zhu & Wai Keung Li, 2019. "Time series models for realized covariance matrices based on the matrix-F distribution," Papers 1903.12077, arXiv.org, revised Jul 2020.
    20. BAUWENS, Luc & HAFNER, Christian & LAURENT, Sébastien, 2011. "Volatility models," LIDAM Discussion Papers CORE 2011058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
      • Bauwens, L. & Hafner C. & Laurent, S., 2011. "Volatility Models," LIDAM Discussion Papers ISBA 2011044, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
      • Bauwens, L. & Hafner, C. & Laurent, S., 2012. "Volatility Models," LIDAM Reprints ISBA 2012028, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    21. Roland Weigand, 2014. "Matrix Box-Cox Models for Multivariate Realized Volatility," Working Papers 144, Bavarian Graduate Program in Economics (BGPE).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sep:wpaper:3_234. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Maria Rizzo (email available below). General contact details of provider: https://edirc.repec.org/data/dssalit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.