Forecasting comparison of long term component dynamic models for realized covariance matrices
Author
Abstract
(This abstract was borrowed from another version of this item.)
Suggested Citation
Note: In : Annals of Economics and Statistics, 123/124, 103-154, 2016
Download full text from publisher
To our knowledge, this item is not available for download. To find whether it is available, there are three options:1. Check below whether another version of this item is available online.
2. Check on the provider's web page whether it is in fact available.
3. Perform a for a similarly titled item that would be available.
Other versions of this item:
- Luc Bauwens & Manuela Braione & Giuseppe Storti, 2016. "Forecasting Comparison of Long Term Component Dynamic Models for Realized Covariance Matrices," Annals of Economics and Statistics, GENES, issue 123-124, pages 103-134.
- BAUWENS, Luc & BRAIONE, Manuela & STORTI, Giuseppe, 2014. "Forecasting comparison of long term component dynamic models for realized covariance matrices," LIDAM Discussion Papers CORE 2014053, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Bauwens, Luc & Xu, Yongdeng, 2023.
"DCC- and DECO-HEAVY: Multivariate GARCH models based on realized variances and correlations,"
International Journal of Forecasting, Elsevier, vol. 39(2), pages 938-955.
- Bauwens, Luc & Xu, Yongdeng, 2019. "DCC and DECO-HEAVY: a multivariate GARCH model based on realized variances and correlations," Cardiff Economics Working Papers E2019/5, Cardiff University, Cardiff Business School, Economics Section, revised Aug 2021.
- Bauwens, Luc & Braione, Manuela & Storti, Giuseppe, 2017.
"A dynamic component model for forecasting high-dimensional realized covariance matrices,"
Econometrics and Statistics, Elsevier, vol. 1(C), pages 40-61.
- BAUWENS, Luc & BRAIONE, Manuela & STORTI, Giuseppe, 2016. "A dynamic component model for forecasting high-dimensional realized covariance matrices," LIDAM Discussion Papers CORE 2016001, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Luc Bauwens & Manuela Braione & Giuseppe Storti, 2020. "A Dynamic Component Model for Forecasting High-Dimensional Realized Covariances Matrices," Working Papers 3_234, Dipartimento di Scienze Economiche e Statistiche, Università degli Studi di Salerno, revised Jul 2020.
- Luc BAUWENS, Manuela BRAIONE and Giuseppe STORTI & Luc BAUWENS, Manuela BRAIONE and Giuseppe STORTI & Luc BAUWENS, Manuela BRAIONE and Giuseppe STORTI, 2017. "A dynamic component model for forecasting high-dimensional realized covariance matrices," LIDAM Reprints CORE 2812, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Matias Quiroz & Laleh Tafakori & Hans Manner, 2024. "Forecasting realized covariances using HAR-type models," Papers 2412.10791, arXiv.org.
- Naimoli, Antonio & Storti, Giuseppe, 2019.
"Heterogeneous component multiplicative error models for forecasting trading volumes,"
International Journal of Forecasting, Elsevier, vol. 35(4), pages 1332-1355.
- Naimoli, Antonio & Storti, Giuseppe, 2019. "Heterogeneous component multiplicative error models for forecasting trading volumes," MPRA Paper 93802, University Library of Munich, Germany.
- Jin, Xin & Maheu, John M., 2016.
"Bayesian semiparametric modeling of realized covariance matrices,"
Journal of Econometrics, Elsevier, vol. 192(1), pages 19-39.
- Jin, Xin & Maheu, John M, 2014. "Bayesian Semiparametric Modeling of Realized Covariance Matrices," MPRA Paper 60102, University Library of Munich, Germany.
- Xin Jin & John M. Maheu, 2014. "Bayesian Semiparametric Modeling of Realized Covariance Matrices," Working Paper series 34_14, Rimini Centre for Economic Analysis.
- Matias Quiroz & Laleh Tafakori & Hans Manner, 2024. "Forecasting Realized Covariances Using HAR-Type Models," Graz Economics Papers 2024-20, University of Graz, Department of Economics.
- Vassallo, Danilo & Buccheri, Giuseppe & Corsi, Fulvio, 2021. "A DCC-type approach for realized covariance modeling with score-driven dynamics," International Journal of Forecasting, Elsevier, vol. 37(2), pages 569-586.
- Luc Bauwens & Edoardo Otranto, 2023.
"Modeling Realized Covariance Matrices: A Class of Hadamard Exponential Models,"
Journal of Financial Econometrics, Oxford University Press, vol. 21(4), pages 1376-1401.
- Bauwens, Luc & Otranto, Edoardo, 2020. "Modelling Realized Covariance Matrices: a Class of Hadamard Exponential Models," LIDAM Discussion Papers CORE 2020034, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Bauwens, Luc & Otranto, Edoardo, 2022. "Modeling Realized Covariance Matrices: A Class of Hadamard Exponential Models," LIDAM Reprints CORE 3202, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- L. Bauwens & E. Otranto, 2020. "Modelling Realized Covariance Matrices: a Class of Hadamard Exponential Models," Working Paper CRENoS 202007, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
- Conrad, Christian & Stuermer, Karin, 2017. "On the economic determinants of optimal stock-bond portfolios: international evidence," Working Papers 0636, University of Heidelberg, Department of Economics.
- BAUWENS Luc, & XU Yongdeng,, 2019. "DCC-HEAVY: A multivariate GARCH model based on realized variances and correlations," LIDAM Discussion Papers CORE 2019025, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Gribisch, Bastian & Hartkopf, Jan Patrick, 2023. "Modeling realized covariance measures with heterogeneous liquidity: A generalized matrix-variate Wishart state-space model," Journal of Econometrics, Elsevier, vol. 235(1), pages 43-64.
- Marchese, Malvina & Kyriakou, Ioannis & Tamvakis, Michael & Di Iorio, Francesca, 2020. "Forecasting crude oil and refined products volatilities and correlations: New evidence from fractionally integrated multivariate GARCH models," Energy Economics, Elsevier, vol. 88(C).
- Gribisch, Bastian & Hartkopf, Jan Patrick & Liesenfeld, Roman, 2020. "Factor state–space models for high-dimensional realized covariance matrices of asset returns," Journal of Empirical Finance, Elsevier, vol. 55(C), pages 1-20.
- Xin Jin & John M. Maheu & Qiao Yang, 2019. "Bayesian parametric and semiparametric factor models for large realized covariance matrices," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(5), pages 641-660, August.
- Hartkopf, Jan Patrick & Reh, Laura, 2023. "Challenging golden standards in EWMA smoothing parameter calibration based on realized covariance measures," Finance Research Letters, Elsevier, vol. 56(C).
- Braione, Manuela, 2016.
"A time-varying long run HEAVY model,"
Statistics & Probability Letters, Elsevier, vol. 119(C), pages 36-44.
- BRAIONE, Manuela, 2016. "A time-varying long run HEAVY model," LIDAM Discussion Papers CORE 2016002, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Harry Vander Elst & David Veredas, 2017. "Smoothing it Out: Empirical and Simulation Results for Disentangled Realized Covariances," Journal of Financial Econometrics, Oxford University Press, vol. 15(1), pages 106-138.
More about this item
JEL classification:
- C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
- C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
- C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cor:louvrp:2923. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Alain GILLIS (email available below). General contact details of provider: https://edirc.repec.org/data/coreebe.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/p/cor/louvrp/2923.html