IDEAS home Printed from https://ideas.repec.org/p/cor/louvrp/2923.html

Forecasting comparison of long term component dynamic models for realized covariance matrices

Author

Listed:
  • Luc Bauwens
  • Manuela Braione
  • Giuseppe Storti

Abstract

Novel model specifications that include a time-varying long-run component in the dynamics of realized covariance matrices are proposed. The modelling framework allows the secular component to enter the model either additively or as a multiplicative factor, and to be specified parametrically, using a MIDAS filter, or non-parametrically. Estimation is performed by maximizing a Wishart quasi-likelihood function. The one-step ahead forecasting performance is assessed by means of three approaches: model confidence sets, minimum variance portfolios and Value-at-Risk. The results show that the proposed models outperform benchmarks incorporating a constant long-run component both in and out-of-sample.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Luc Bauwens & Manuela Braione & Giuseppe Storti, 2016. "Forecasting comparison of long term component dynamic models for realized covariance matrices," LIDAM Reprints CORE 2923, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  • Handle: RePEc:cor:louvrp:2923
    Note: In : Annals of Economics and Statistics, 123/124, 103-154, 2016
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bauwens, Luc & Xu, Yongdeng, 2023. "DCC- and DECO-HEAVY: Multivariate GARCH models based on realized variances and correlations," International Journal of Forecasting, Elsevier, vol. 39(2), pages 938-955.
    2. Bauwens, Luc & Braione, Manuela & Storti, Giuseppe, 2017. "A dynamic component model for forecasting high-dimensional realized covariance matrices," Econometrics and Statistics, Elsevier, vol. 1(C), pages 40-61.
    3. Matias Quiroz & Laleh Tafakori & Hans Manner, 2024. "Forecasting realized covariances using HAR-type models," Papers 2412.10791, arXiv.org.
    4. Naimoli, Antonio & Storti, Giuseppe, 2019. "Heterogeneous component multiplicative error models for forecasting trading volumes," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1332-1355.
    5. Jin, Xin & Maheu, John M., 2016. "Bayesian semiparametric modeling of realized covariance matrices," Journal of Econometrics, Elsevier, vol. 192(1), pages 19-39.
    6. Matias Quiroz & Laleh Tafakori & Hans Manner, 2024. "Forecasting Realized Covariances Using HAR-Type Models," Graz Economics Papers 2024-20, University of Graz, Department of Economics.
    7. Vassallo, Danilo & Buccheri, Giuseppe & Corsi, Fulvio, 2021. "A DCC-type approach for realized covariance modeling with score-driven dynamics," International Journal of Forecasting, Elsevier, vol. 37(2), pages 569-586.
    8. Luc Bauwens & Edoardo Otranto, 2023. "Modeling Realized Covariance Matrices: A Class of Hadamard Exponential Models," Journal of Financial Econometrics, Oxford University Press, vol. 21(4), pages 1376-1401.
    9. Conrad, Christian & Stuermer, Karin, 2017. "On the economic determinants of optimal stock-bond portfolios: international evidence," Working Papers 0636, University of Heidelberg, Department of Economics.
    10. BAUWENS Luc, & XU Yongdeng,, 2019. "DCC-HEAVY: A multivariate GARCH model based on realized variances and correlations," LIDAM Discussion Papers CORE 2019025, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    11. Gribisch, Bastian & Hartkopf, Jan Patrick, 2023. "Modeling realized covariance measures with heterogeneous liquidity: A generalized matrix-variate Wishart state-space model," Journal of Econometrics, Elsevier, vol. 235(1), pages 43-64.
    12. Marchese, Malvina & Kyriakou, Ioannis & Tamvakis, Michael & Di Iorio, Francesca, 2020. "Forecasting crude oil and refined products volatilities and correlations: New evidence from fractionally integrated multivariate GARCH models," Energy Economics, Elsevier, vol. 88(C).
    13. Gribisch, Bastian & Hartkopf, Jan Patrick & Liesenfeld, Roman, 2020. "Factor state–space models for high-dimensional realized covariance matrices of asset returns," Journal of Empirical Finance, Elsevier, vol. 55(C), pages 1-20.
    14. Xin Jin & John M. Maheu & Qiao Yang, 2019. "Bayesian parametric and semiparametric factor models for large realized covariance matrices," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(5), pages 641-660, August.
    15. Hartkopf, Jan Patrick & Reh, Laura, 2023. "Challenging golden standards in EWMA smoothing parameter calibration based on realized covariance measures," Finance Research Letters, Elsevier, vol. 56(C).
    16. Braione, Manuela, 2016. "A time-varying long run HEAVY model," Statistics & Probability Letters, Elsevier, vol. 119(C), pages 36-44.
    17. Harry Vander Elst & David Veredas, 2017. "Smoothing it Out: Empirical and Simulation Results for Disentangled Realized Covariances," Journal of Financial Econometrics, Oxford University Press, vol. 15(1), pages 106-138.

    More about this item

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cor:louvrp:2923. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Alain GILLIS (email available below). General contact details of provider: https://edirc.repec.org/data/coreebe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.