IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Long memory and Periodicity in Intraday Volatility

  • Eduardo Rossi

    (Department of Economics and Management, University of Pavia)

  • Dean Fantazzini

    (Moscow School of Economics, M.V. Lomonosov Moscow State University)

Intraday return volatilities are characterized by the contemporaneous presence of periodicity and long memory. This paper proposes two new parameterizations of the intraday volatility: the Fractionally Integrated Periodic EGARCH and the Seasonal Fractional Integrated Periodic EGARCH, which provide the required flexibility to account for both features. The periodic kurtosis and periodic autocorrelations of power transformations of the absolute returns are computed for both models. The empirical application shows that volatility of the hourly Emini S&P 500 futures returns are characterized by a periodic leverage effect coupled with a statistically significant long-range dependence. An out-of-sample forecasting comparison with alternative models shows that a constrained version of the FI-PEGARCH provides superior forecasts. A simulation experiment is carried out to investigate the effects that sample frequency has on the fractional differencing parameter estimate.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://economia.unipv.it/docs/dipeco/quad/ps/RePEc/pav/demwpp/DEMWP0015.pdf
Download Restriction: no

Paper provided by University of Pavia, Department of Economics and Management in its series DEM Working Papers Series with number 015.

as
in new window

Length: 41 pages
Date of creation: Nov 2012
Date of revision:
Handle: RePEc:pav:demwpp:015
Contact details of provider: Postal: Via S. Felice, 5 - 27100 Pavia
Phone: +39/0382/506208
Fax: +39/0382/304226
Web page: http://epmq.unipv.eu/site/home.html

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Andrew Patton, 2006. "Volatility Forecast Comparison using Imperfect Volatility Proxies," Research Paper Series 175, Quantitative Finance Research Centre, University of Technology, Sydney.
  2. Arteche González, Jesús María, 2002. "Gaussian Semiparametric Estimation in Long Memory in Stochastic Volatility and Signal Plus Noise Models," BILTOKI 2002-02, Universidad del País Vasco - Departamento de Economía Aplicada III (Econometría y Estadística).
  3. Esther Ruiz & Helena Veiga, 2006. "Modelling Long-Memory Volatilities With Leverage Effect: Almsv Versus Fiegarch," Statistics and Econometrics Working Papers ws066016, Universidad Carlos III, Departamento de Estadística y Econometría.
  4. Bollerslev, T. & Ghysels, E., 1994. "Periodic Autoregressive Conditional Heteroskedasticity," Cahiers de recherche 9408, Universite de Montreal, Departement de sciences economiques.
  5. Beltratti, Andrea & Morana, Claudio, 1999. "Computing value at risk with high frequency data," Journal of Empirical Finance, Elsevier, vol. 6(5), pages 431-455, December.
  6. Philip Hans Franses & Richard Paap, 2000. "Modelling day-of-the-week seasonality in the S&P 500 index," Applied Financial Economics, Taylor & Francis Journals, vol. 10(5), pages 483-488.
  7. Bollerslev, Tim & Ole Mikkelsen, Hans, 1996. "Modeling and pricing long memory in stock market volatility," Journal of Econometrics, Elsevier, vol. 73(1), pages 151-184, July.
  8. Baillie, Richard T. & Bollerslev, Tim & Mikkelsen, Hans Ole, 1996. "Fractionally integrated generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 74(1), pages 3-30, September.
  9. Neil Shephard & Kevin Sheppard, 2009. "Realising the future: forecasting with high frequency based volatility (HEAVY) models," Economics Papers 2009-W03, Economics Group, Nuffield College, University of Oxford.
  10. Josu Arteche & Peter M. Robinson, 1998. "Semiparametric inference in seasonal and cyclical long memory processes," LSE Research Online Documents on Economics 2203, London School of Economics and Political Science, LSE Library.
  11. Ilias Tsiakas, 2004. "Periodic Stochastic Volatility and Fat Tails," Working Papers wp04-09, Warwick Business School, Finance Group.
  12. Bordignon, Silvano & Caporin, Massimiliano & Lisi, Francesco, 2007. "Generalised long-memory GARCH models for intra-daily volatility," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 5900-5912, August.
  13. Koopman, Siem Jan & Ooms, Marius & Carnero, M. Angeles, 2007. "Periodic Seasonal Reg-ARFIMAGARCH Models for Daily Electricity Spot Prices," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 16-27, March.
  14. Martin Martens & Yuan-Chen Chang & Stephen J. Taylor, 2002. "A Comparison of Seasonal Adjustment Methods When Forecasting Intraday Volatility," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 25(2), pages 283-299.
  15. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-70, March.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:pav:demwpp:015. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Alice Albonico)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.