Some searches may not work properly. We apologize for the inconvenience.
My bibliography Save this paperLong memory and Periodicity in Intraday Volatility
Author
Abstract
Suggested Citation
Download full text from publisher
Other versions of this item:
- Eduardo Rossi & Dean Fantazzini, 2015. "Long Memory and Periodicity in Intraday Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 13(4), pages 922-961.
References listed on IDEAS
- He, Changli & Teräsvirta, Timo & Malmsten, Hans, 2002. "Moment Structure Of A Family Of First-Order Exponential Garch Models," Econometric Theory, Cambridge University Press, vol. 18(4), pages 868-885, August.
- Koopman, Siem Jan & Ooms, Marius & Carnero, M. Angeles, 2007.
"Periodic Seasonal Reg-ARFIMAGARCH Models for Daily Electricity Spot Prices,"
Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 16-27, March.
- Siem Jan Koopman & Marius Ooms & M. Angeles Carnero, 2005. "Periodic Seasonal Reg-ARFIMA-GARCH Models for Daily Electricity Spot Prices," Tinbergen Institute Discussion Papers 05-091/4, Tinbergen Institute.
- Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
- Neil Shephard & Kevin Sheppard, 2010.
"Realising the future: forecasting with high-frequency-based volatility (HEAVY) models,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(2), pages 197-231.
- Neil Shephard & Kevin Sheppard, 2009. "Realising the future: forecasting with high frequency based volatility (HEAVY) models," OFRC Working Papers Series 2009fe02, Oxford Financial Research Centre.
- Neil Shephard & Kevin Sheppard, 2009. "Realising the future: forecasting with high frequency based volatility (HEAVY) models," Economics Series Working Papers 438, University of Oxford, Department of Economics.
- Neil Shephard & Kevin Sheppard, 2009. "Realising the future: forecasting with high frequency based volatility (HEAVY) models," Economics Papers 2009-W03, Economics Group, Nuffield College, University of Oxford.
- Bollerslev, Tim & Ole Mikkelsen, Hans, 1996.
"Modeling and pricing long memory in stock market volatility,"
Journal of Econometrics, Elsevier, vol. 73(1), pages 151-184, July.
- Tom Doan, "undated". "RATS program to replicate Bollerslev-Mikkelson(1996) FIEGARCH models," Statistical Software Components RTZ00173, Boston College Department of Economics.
- Bollerslev, Tim & Ghysels, Eric, 1996.
"Periodic Autoregressive Conditional Heteroscedasticity,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 14(2), pages 139-151, April.
- Bollerslev, T. & Ghysels, E., 1994. "Periodic Autoregressive Conditional Heteroskedasticity," Cahiers de recherche 9408, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
- Bollerslev, T. & Ghysels, E., 1994. "Periodic Autoregressive Conditional Heteroskedasticity," Cahiers de recherche 9408, Universite de Montreal, Departement de sciences economiques.
- Richard T. Baillie & Young-Wook Han & Robert J. Myers & Jeongseok Song, 2007. "Long Memory and FIGARCH Models for Daily and High Frequency Commodity Prices," Working Papers 594, Queen Mary University of London, School of Economics and Finance.
- Robert F. Engle & Magdalena E. Sokalska, 0. "Forecasting intraday volatility in the US equity market. Multiplicative component GARCH," Journal of Financial Econometrics, Oxford University Press, vol. 10(1), pages 54-83.
- Josu Arteche & Peter M. Robinson, 2000.
"Semiparametric Inference in Seasonal and Cyclical Long Memory Processes,"
Journal of Time Series Analysis, Wiley Blackwell, vol. 21(1), pages 1-25, January.
- Arteche, Josu & Robinson, Peter M., 1998. "Semiparametric inference in seasonal and cyclical long memory processes," LSE Research Online Documents on Economics 2203, London School of Economics and Political Science, LSE Library.
- Franses, Philip Hans & Paap, Richard, 2004. "Periodic Time Series Models," OUP Catalogue, Oxford University Press, number 9780199242030, Decembrie.
- Arteche, Josu, 2004.
"Gaussian semiparametric estimation in long memory in stochastic volatility and signal plus noise models,"
Journal of Econometrics, Elsevier, vol. 119(1), pages 131-154, March.
- Arteche González, Jesús María, 2002. "Gaussian Semiparametric Estimation in Long Memory in Stochastic Volatility and Signal Plus Noise Models," BILTOKI 1134-8984, Universidad del País Vasco - Departamento de Economía Aplicada III (Econometría y Estadística).
- Beltratti, Andrea & Morana, Claudio, 1999. "Computing value at risk with high frequency data," Journal of Empirical Finance, Elsevier, vol. 6(5), pages 431-455, December.
- Torben G. Anderson & Tim Bollerslev & Ashish Das, 1998. "Testing for Market Microstructure Effects in Intraday Volatility: A Reassessment of the Tokyo FX Experiment," NBER Working Papers 6666, National Bureau of Economic Research, Inc.
- Ruiz, Esther & Veiga, Helena, 2008.
"Modelling long-memory volatilities with leverage effect: A-LMSV versus FIEGARCH,"
Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 2846-2862, February.
- Ruiz Ortega, Esther & Veiga, Helena, 2006. "Modelling long-memory volatilities with leverage effect: ALMSV versus FIEGARCH," DES - Working Papers. Statistics and Econometrics. WS ws066016, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Philip Hans Franses & Richard Paap, 2000. "Modelling day-of-the-week seasonality in the S&P 500 index," Applied Financial Economics, Taylor & Francis Journals, vol. 10(5), pages 483-488.
- Tsiakas, Ilias, 2008. "Overnight information and stochastic volatility: A study of European and US stock exchanges," Journal of Banking & Finance, Elsevier, vol. 32(2), pages 251-268, February.
- A. I. McLeod, 1994. "Diagnostic Checking Of Periodic Autoregression Models With Application," Journal of Time Series Analysis, Wiley Blackwell, vol. 15(2), pages 221-233, March.
- Madhavan, Ananth, 2000. "Market microstructure: A survey," Journal of Financial Markets, Elsevier, vol. 3(3), pages 205-258, August.
- Ilias Tsiakas, 2006. "Periodic Stochastic Volatility and Fat Tails," Journal of Financial Econometrics, Oxford University Press, vol. 4(1), pages 90-135.
- Baillie, Richard T. & Bollerslev, Tim & Mikkelsen, Hans Ole, 1996.
"Fractionally integrated generalized autoregressive conditional heteroskedasticity,"
Journal of Econometrics, Elsevier, vol. 74(1), pages 3-30, September.
- Tom Doan, "undated". "RATS programs to replicate Baillie, Bollerslev, Mikkelson FIGARCH results," Statistical Software Components RTZ00009, Boston College Department of Economics.
- Silvano Bordignon & Massimiliano Caporin & Francesco Lisi, 2009. "Periodic Long-Memory GARCH Models," Econometric Reviews, Taylor & Francis Journals, vol. 28(1-3), pages 60-82.
- Patton, Andrew J., 2011.
"Volatility forecast comparison using imperfect volatility proxies,"
Journal of Econometrics, Elsevier, vol. 160(1), pages 246-256, January.
- Andrew Patton, 2006. "Volatility Forecast Comparison using Imperfect Volatility Proxies," Research Paper Series 175, Quantitative Finance Research Centre, University of Technology, Sydney.
- Bordignon, Silvano & Caporin, Massimiliano & Lisi, Francesco, 2007. "Generalised long-memory GARCH models for intra-daily volatility," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 5900-5912, August.
- Taylor, Nicholas, 2007. "A note on the importance of overnight information in risk management models," Journal of Banking & Finance, Elsevier, vol. 31(1), pages 161-180, January.
- Martin Martens & Yuan‐Chen Chang & Stephen J. Taylor, 2002. "A Comparison of Seasonal Adjustment Methods When Forecasting Intraday Volatility," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 25(2), pages 283-299, June.
- Gençay, Ramazan & Dacorogna, Michel & Muller, Ulrich A. & Pictet, Olivier & Olsen, Richard, 2001. "An Introduction to High-Frequency Finance," Elsevier Monographs, Elsevier, edition 1, number 9780122796715.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Detlef Seese & Christof Weinhardt & Frank Schlottmann (ed.), 2008. "Handbook on Information Technology in Finance," International Handbooks on Information Systems, Springer, number 978-3-540-49487-4, November.
- Chu, Carlin C.F. & Lam, K.P., 2011. "Modeling intraday volatility: A new consideration," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 21(3), pages 388-418, July.
- Stéphane Goutte & David Guerreiro & Bilel Sanhaji & Sophie Saglio & Julien Chevallier, 2019. "International Financial Markets," Post-Print halshs-02183053, HAL.
- Massimiliano Caporin & Angelo Ranaldo & Gabriel G. Velo, 2015.
"Precious metals under the microscope: a high-frequency analysis,"
Quantitative Finance, Taylor & Francis Journals, vol. 15(5), pages 743-759, May.
- Caporin, Massimiliano & Ranaldo, Angelo & Velo, Gabriel G., 2014. "Precious Metals Under the Microscope: A High-Frequency Analysis," Working Papers on Finance 1409, University of St. Gallen, School of Finance.
- CHIA-LIN CHANG & MICHAEL McALEER & ROENGCHAI TANSUCHAT, 2012.
"Modelling Long Memory Volatility In Agricultural Commodity Futures Returns,"
Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 7(02), pages 1-27.
- Tansuchat, R. & Chang, C-L. & McAleer, M.J., 2009. "Modelling Long Memory Volatility in Agricultural Commodity Futures Returns," Econometric Institute Research Papers EI 2009-35, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Roengchai Tansuchat & Chia-Lin Chang & Michael McAleer, 2009. "Modelling Long Memory Volatility in Agricultural Commodity Futures Returns," CIRJE F-Series CIRJE-F-680, CIRJE, Faculty of Economics, University of Tokyo.
- Michael McAleer & Chia-Lin Chang & Roengchai Tansuchat, 2012. "Modelling Long Memory Volatility in Agricultural Commodity Futures Return," KIER Working Papers 817, Kyoto University, Institute of Economic Research.
- Roengchai Tansuchat & Chia-Lin Chang & Michael McAleer, 2009. "Modelling Long Memory Volatility in Agricultural Commodity Futures Returns," CARF F-Series CARF-F-183, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
- Chang, C-L. & McAleer, M.J. & Tansuchat, R., 2012. "Modelling Long Memory Volatility in Agricultural Commodity Futures Returns," Econometric Institute Research Papers EI 2012-15, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Chia-Lin Chang & Michael McAleer & Roengchai Tansuchat, 2012. "Modelling Long Memory Volatility in Agricultural Commodity Futures Returns," Working Papers in Economics 12/09, University of Canterbury, Department of Economics and Finance.
- Chia-Lin Chang & Michael McAleer & Roengchai Tansuchat, 2012. "Modelling Long Memory Volatility in Agricultural Commodity Futures Returns," Documentos de Trabajo del ICAE 2012-10, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico, revised May 2012.
- Harvey,Andrew C., 2013.
"Dynamic Models for Volatility and Heavy Tails,"
Cambridge Books,
Cambridge University Press, number 9781107034723, November.
- Harvey,Andrew C., 2013. "Dynamic Models for Volatility and Heavy Tails," Cambridge Books, Cambridge University Press, number 9781107630024, November.
- Xiufeng Yan, 2021. "Autoregressive conditional duration modelling of high frequency data," Papers 2111.02300, arXiv.org.
- Antonakakis, Nikolaos & Darby, Julia, 2012. "Forecasting Volatility in Developing Countries' Nominal Exchange Returns," MPRA Paper 40875, University Library of Munich, Germany.
- Josu Arteche, 2012. "Standard and seasonal long memory in volatility: an application to Spanish inflation," Empirical Economics, Springer, vol. 42(3), pages 693-712, June.
- Shelton Peiris & Manabu Asai & Michael McAleer, 2017.
"Estimating and Forecasting Generalized Fractional Long Memory Stochastic Volatility Models,"
JRFM, MDPI, vol. 10(4), pages 1-16, December.
- Shelton Peiris & Manabu Asai & Michael McAleer, 2016. "Estimating and forecasting generalized fractional Long memory stochastic volatility models," Documentos de Trabajo del ICAE 2016-08, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
- Peiris, S. & Asai, M. & McAleer, M.J., 2016. "Estimating and Forecasting Generalized Fractional Long Memory Stochastic Volatility Models," Econometric Institute Research Papers EI2016-27, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Shelton Peiris & Manabu Asai & Michael McAleer, 2016. "Estimating and Forecasting Generalized Fractional Long Memory Stochastic Volatility Models," Tinbergen Institute Discussion Papers 16-044/III, Tinbergen Institute.
- Bordignon, Silvano & Caporin, Massimiliano & Lisi, Francesco, 2007. "Generalised long-memory GARCH models for intra-daily volatility," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 5900-5912, August.
- Xiufeng Yan, 2021. "Multiplicative Component GARCH Model of Intraday Volatility," Papers 2111.02376, arXiv.org.
- Asai, Manabu & McAleer, Michael & Peiris, Shelton, 2020.
"Realized stochastic volatility models with generalized Gegenbauer long memory,"
Econometrics and Statistics, Elsevier, vol. 16(C), pages 42-54.
- Asai, M. & McAleer, M.J. & Peiris, S., 2017. "Realized Stochastic Volatility Models with Generalized Gegenbauer Long Memory," Econometric Institute Research Papers EI2017-29, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Manabu Asai & Shelton Peiris & Michael McAleer, 2017. "Realized Stochastic Volatility Models with Generalized Gegenbauer Long Memory," Documentos de Trabajo del ICAE 2017-26, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
- Manabu Asai & Michael McAleer & Shelton Peiris, 2017. "Realized Stochastic Volatility Models with Generalized Gegenbauer Long Memory," Tinbergen Institute Discussion Papers 17-105/III, Tinbergen Institute.
- Arteche, Josu & García-Enríquez, Javier, 2017. "Singular Spectrum Analysis for signal extraction in Stochastic Volatility models," Econometrics and Statistics, Elsevier, vol. 1(C), pages 85-98.
- Wen Cheong Chin & Min Cherng Lee, 2018. "S&P500 volatility analysis using high-frequency multipower variation volatility proxies," Empirical Economics, Springer, vol. 54(3), pages 1297-1318, May.
- Caporin, Massimiliano & Ranaldo, Angelo & Velo, Gabriel G., 2013. "Stylized Facts and Dynamic Modeling of High-frequency Data on Precious Metals," Working Papers on Finance 1318, University of St. Gallen, School of Finance.
- Henning Fischer & Ángela Blanco‐FERNÁndez & Peter Winker, 2016. "Predicting Stock Return Volatility: Can We Benefit from Regression Models for Return Intervals?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 35(2), pages 113-146, March.
- Thibault Vatter & Hau-Tieng Wu & Valérie Chavez-Demoulin & Bin Yu, 2015. "Non-Parametric Estimation of Intraday Spot Volatility: Disentangling Instantaneous Trend and Seasonality," Econometrics, MDPI, vol. 3(4), pages 1-24, December.
- Anagnostidis, Panagiotis & Emmanouilides, Christos J., 2015. "Nonlinearity in high-frequency stock returns: Evidence from the Athens Stock Exchange," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 473-487.
- Harry-Paul Vander Elst, 2015.
"FloGARCH: Realizing Long Memory and Asymmetries in Returns Valitility,"
Working Papers ECARES
ECARES 2015-12, ULB -- Universite Libre de Bruxelles.
- Harry Vander Elst, 2015. "FloGARCH : Realizing long memory and asymmetries in returns volatility," Working Paper Research 280, National Bank of Belgium.
More about this item
Keywords
Intraday volatility; Long memory; FI-PEGARCH; SFI-PEGARCH; Periodicmodels.;All these keywords.
JEL classification:
- C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
- C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
- G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2012-11-17 (Econometrics)
- NEP-ETS-2012-11-17 (Econometric Time Series)
- NEP-FOR-2012-11-17 (Forecasting)
- NEP-MST-2012-11-17 (Market Microstructure)
- NEP-RMG-2012-11-17 (Risk Management)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pav:demwpp:015. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Alice Albonico (email available below). General contact details of provider: https://edirc.repec.org/data/dppavit.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.