IDEAS home Printed from https://ideas.repec.org/a/oup/jfinec/v4y2006i1p90-135.html
   My bibliography  Save this article

Periodic Stochastic Volatility and Fat Tails

Author

Listed:
  • Ilias Tsiakas

Abstract

This article provides a comprehensive analysis of the size and statistical significance of the day of the week, month of the year, and holiday effects in daily stock index returns and volatility. We employ data from the Dow Jones Industrial Average (DJIA), the S&P 500, the S&P MidCap 400, and the S&P SmallCap 600 in order to test whether the seasonal patterns of medium and small firms are similar to those of large firms. Using formal hypothesis tests based on bootstrapping, we demonstrate that there are more significant calendar effects in volatility than in expected returns, especially for the two large cap indices. More importantly, we introduce the periodic stochastic volatility (PSV) model for characterizing the observed seasonal patterns of daily financial market volatility. We analyze the interaction between seasonal heteroskedasticity and fat tails by comparing the performance of Gaussian PSV and fat-tailed PSVt specifications to the plain vanilla SV and SVt benchmarks. Consistent with our model-free results, we find strong evidence of seasonal periodicity in volatility, which essentially eliminates the need for a fat-tailed conditional distribution, and is robust to the exclusion of the crash of 1987 outliers. Copyright 2006, Oxford University Press.

Suggested Citation

  • Ilias Tsiakas, 2006. "Periodic Stochastic Volatility and Fat Tails," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 4(1), pages 90-135.
  • Handle: RePEc:oup:jfinec:v:4:y:2006:i:1:p:90-135
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/jjfinec/nbi023
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eduardo Rossi & Dean Fantazzini, 2015. "Long Memory and Periodicity in Intraday Volatility," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 13(4), pages 922-961.
    2. Hüseyin Kaya & Sadullah Çelik, 2009. "Empirical Evidence For Day Of The Week Effect In An Emerging Market: The Turkish Case," 2009 Meeting Papers 219, Society for Economic Dynamics.
    3. Qadan, Mahmoud & Kliger, Doron, 2016. "The short trading day anomaly," Journal of Empirical Finance, Elsevier, vol. 38(PA), pages 62-80.
    4. repec:spr:sistpr:v:20:y:2017:i:2:d:10.1007_s11203-016-9139-z is not listed on IDEAS
    5. Tsiakas, Ilias, 2008. "Overnight information and stochastic volatility: A study of European and US stock exchanges," Journal of Banking & Finance, Elsevier, vol. 32(2), pages 251-268, February.
    6. Yermack, David, 2014. "Tailspotting: Identifying and profiting from CEO vacation trips," Journal of Financial Economics, Elsevier, vol. 113(2), pages 252-269.
    7. Imtiaz Mazumder, M. & Chu, Ting-Heng & Miller, Edward M. & Prather, Larry J., 2008. "International day-of-the-week effects: An empirical examination of iShares," International Review of Financial Analysis, Elsevier, vol. 17(4), pages 699-715, September.
    8. M. Imtiaz Mazumder & Edward M. Miller & Oscar A. Varela, 2010. "Market Timing the Trading of International Mutual Funds: Weekend, Weekday and Serial Correlation Strategies," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 37(7-8), pages 979-1007.
    9. Charles, Amélie, 2010. "The day-of-the-week effects on the volatility: The role of the asymmetry," European Journal of Operational Research, Elsevier, vol. 202(1), pages 143-152, April.
    10. Ilias Tsiakas, 2010. "The Economic Gains Of Trading Stocks Around Holidays," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 33(1), pages 1-26.
    11. Giovanis, Eleftherios, 2009. "Calendar Effects and Seasonality on Returns and Volatility," MPRA Paper 64404, University Library of Munich, Germany.
    12. Fernando F. Ferreira & A. Christian Silva & Ju-Yi Yen, 2014. "Information ratio analysis of momentum strategies," Papers 1402.3030, arXiv.org, revised Jul 2014.
    13. Bidarkota, Prasad V. & Dupoyet, Brice V. & McCulloch, J. Huston, 2009. "Asset pricing with incomplete information and fat tails," Journal of Economic Dynamics and Control, Elsevier, vol. 33(6), pages 1314-1331, June.
    14. Aknouche, Abdelhakim, 2013. "Periodic autoregressive stochastic volatility," MPRA Paper 69571, University Library of Munich, Germany, revised 2015.
    15. Ilias Tsiakas, 2004. "Analysis of the predictive ability of information accumulated over nights, weekends and holidays," Econometric Society 2004 Australasian Meetings 208, Econometric Society.
    16. Aknouche, Abdelhakim & Al-Eid, Eid & Demouche, Nacer, 2016. "Generalized quasi-maximum likelihood inference for periodic conditionally heteroskedastic models," MPRA Paper 75770, University Library of Munich, Germany, revised 19 Dec 2016.
    17. David Yermack, 2012. "Tailspotting: Identifying and profiting from CEO vacation trips," NBER Working Papers 17940, National Bureau of Economic Research, Inc.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:jfinec:v:4:y:2006:i:1:p:90-135. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Oxford University Press) or (Christopher F. Baum). General contact details of provider: http://edirc.repec.org/data/sofieea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.