IDEAS home Printed from https://ideas.repec.org/p/ltv/wpaper/201401.html
   My bibliography  Save this paper

Semi-Global Solutions to DSGE Models: Perturbation around a Deterministic Path

Author

Listed:
  • Viktors Ajevskis

    (Bank of Latvia)

Abstract

This study presents an approach based on a perturbation technique to construct global solutions to dynamic stochastic general equilibrium models (DSGE). The main idea is to expand a solution in a series of powers of a small parameter scaling the uncertainty in the economy around a solution to the deterministic model, i.e. the model where the volatility of the shocks vanishes. If a deterministic path is global in state variables, then so are the constructed solutions to the stochastic model, whereas these solutions are local in the scaling parameter. Under the assumption that a deterministic path is already known the higher order terms in the expansion are obtained recursively by solving linear rational expectations models with timevarying parameters. The present work proposes a method which rests on backward recursion for solving this type of models.

Suggested Citation

  • Viktors Ajevskis, 2014. "Semi-Global Solutions to DSGE Models: Perturbation around a Deterministic Path," Working Papers 2014/01, Latvijas Banka.
  • Handle: RePEc:ltv:wpaper:201401
    as

    Download full text from publisher

    File URL: https://www.bank.lv/images/stories/pielikumi/publikacijas/petijumi/WP_1_2014.pdf
    Download Restriction: no

    File URL: https://www.macroeconomics.lv/sites/default/files/wp_1_2014.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Klein, Paul, 2000. "Using the generalized Schur form to solve a multivariate linear rational expectations model," Journal of Economic Dynamics and Control, Elsevier, vol. 24(10), pages 1405-1423, September.
    2. Mehra, Rajnish & Prescott, Edward C., 1985. "The equity premium: A puzzle," Journal of Monetary Economics, Elsevier, vol. 15(2), pages 145-161, March.
    3. Foerster, Andrew & Rubio-Ramírez, Juan Francisco & Waggoner, Daniel F & Zha, Tao, 2013. "Perturbation Methods for Markov-Switching DSGE Models," CEPR Discussion Papers 9464, C.E.P.R. Discussion Papers.
    4. Fair, Ray C & Taylor, John B, 1983. "Solution and Maximum Likelihood Estimation of Dynamic Nonlinear Rational Expectations Models," Econometrica, Econometric Society, vol. 51(4), pages 1169-1185, July.
    5. Kenneth L. Judd, 1998. "Numerical Methods in Economics," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262100711, December.
    6. Schmitt-Grohe, Stephanie & Uribe, Martin, 2004. "Solving dynamic general equilibrium models using a second-order approximation to the policy function," Journal of Economic Dynamics and Control, Elsevier, vol. 28(4), pages 755-775, January.
    7. Burnside, Craig, 1998. "Solving asset pricing models with Gaussian shocks," Journal of Economic Dynamics and Control, Elsevier, vol. 22(3), pages 329-340, March.
    8. Judd, Kenneth L. & Guu, Sy-Ming, 1997. "Asymptotic methods for aggregate growth models," Journal of Economic Dynamics and Control, Elsevier, vol. 21(6), pages 1025-1042, June.
    9. Gomme, Paul & Klein, Paul, 2011. "Second-order approximation of dynamic models without the use of tensors," Journal of Economic Dynamics and Control, Elsevier, vol. 35(4), pages 604-615, April.
    10. Gaspar, Jess & L. Judd, Kenneth, 1997. "Solving Large-Scale Rational-Expectations Models," Macroeconomic Dynamics, Cambridge University Press, vol. 1(1), pages 45-75, January.
    11. Pichler, Paul, 2011. "Solving the multi-country Real Business Cycle model using a monomial rule Galerkin method," Journal of Economic Dynamics and Control, Elsevier, vol. 35(2), pages 240-251, February.
    12. Blanchard, Olivier Jean & Kahn, Charles M, 1980. "The Solution of Linear Difference Models under Rational Expectations," Econometrica, Econometric Society, vol. 48(5), pages 1305-1311, July.
    13. Anderson, Gary & Moore, George, 1985. "A linear algebraic procedure for solving linear perfect foresight models," Economics Letters, Elsevier, vol. 17(3), pages 247-252.
    14. Borovička, Jaroslav & Hansen, Lars Peter, 2014. "Examining macroeconomic models through the lens of asset pricing," Journal of Econometrics, Elsevier, vol. 183(1), pages 67-90.
    15. Collard, Fabrice & Juillard, Michel, 2001. "Accuracy of stochastic perturbation methods: The case of asset pricing models," Journal of Economic Dynamics and Control, Elsevier, vol. 25(6-7), pages 979-999, June.
    16. Adjemian, Stéphane & Bastani, Houtan & Juillard, Michel & Karamé, Fréderic & Maih, Junior & Mihoubi, Ferhat & Mutschler, Willi & Perendia, George & Pfeifer, Johannes & Ratto, Marco & Villemot, Sébasti, 2011. "Dynare: Reference Manual Version 4," Dynare Working Papers 1, CEPREMAP, revised May 2020.
    17. Den Haan, Wouter J. & De Wind, Joris, 2012. "Nonlinear and stable perturbation-based approximations," Journal of Economic Dynamics and Control, Elsevier, vol. 36(10), pages 1477-1497.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Viktors Ajevskis, 2019. "Generalised Impulse Response Function as a Perturbation of a Global Solution to DSGE Models," Working Papers 2019/04, Latvijas Banka.

    More about this item

    Keywords

    DSGE; perturbation method; rational expectations models with timevarying parameters; asset pricing model;

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C62 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Existence and Stability Conditions of Equilibrium
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • D50 - Microeconomics - - General Equilibrium and Disequilibrium - - - General
    • D58 - Microeconomics - - General Equilibrium and Disequilibrium - - - Computable and Other Applied General Equilibrium Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ltv:wpaper:201401. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Konstantins Benkovskis). General contact details of provider: http://edirc.repec.org/data/bolgvlv.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.