IDEAS home Printed from https://ideas.repec.org/p/uop/wpaper/0005.html

NoVaS Transformations: Flexible Inference for Volatility Forecasting

Author

Listed:
  • Dimitris Politis
  • Dimitrios Thomakos

Abstract

In this paper we contribute several new results on the NoVaS transformation approach for volatility forecasting introduced by Politis (2003a,b, 2007). In particular: (a) we introduce an alternative target distribution (uniform); (b) we present a new method for volatility forecasting using NoVaS ; (c) we show that the NoVaS methodology is applicable in situations where (global) stationarity fails such as the cases of local stationarity and/or structural breaks; (d) we show how to apply the NoVaS ideas in the case of returns with asymmetric distribution; and finally (e) we discuss the application of NoVaS to the problem of estimating value at risk (VaR). The NoVaS methodology allows for a flexible approach to inference and has immediate applications in the context of short time series and series that exhibit local behavior (e.g. breaks, regime switching etc.) We conduct an extensive simulation study on the predictive ability of the NoVaS approach and and that NoVaS forecasts lead to a much `tighter' distribution of the forecasting performance measure for all data generating processes. This is especially relevant in the context of volatility predictions for risk management. We further illustrate the use of NoVaS for a number of real datasets and compare the forecasting performance of NoVaS -based volatility forecasts with realized and range-based volatility measures.

Suggested Citation

  • Dimitris Politis & Dimitrios Thomakos, 2007. "NoVaS Transformations: Flexible Inference for Volatility Forecasting," Working Papers 0005, University of Peloponnese, Department of Economics.
  • Handle: RePEc:uop:wpaper:0005
    as

    Download full text from publisher

    File URL: http://econ.uop.gr/~econ/RePEc/pdf/politis_thomakos.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. is not listed on IDEAS
    2. Dimitrios Thomakos & Johannes Klepsch & Dimitris N. Politis, 2020. "Model Free Inference on Multivariate Time Series with Conditional Correlations," Stats, MDPI, vol. 3(4), pages 1-26, November.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:uop:wpaper:0005. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kleanthis Gatziolis (email available below). General contact details of provider: https://edirc.repec.org/data/depelgr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.