IDEAS home Printed from https://ideas.repec.org/p/rim/rimwps/44_07.html
   My bibliography  Save this paper

NoVaS Transformations: Flexible Inference for Volatility Forecasting

Author

Listed:
  • Dimitris N. Politis

    () (University of California, San Diego, USA)

  • Dimitrios D. Thomakos

    () (University of Peloponnese, Greece and The Rimini Centre for Economics Analysis, Italy)

Abstract

In this paper we contribute several new results on the NoVaS transformation approach for volatility forecasting introduced by Politis (2003a,b, 2007). In particular: (a) we introduce an alternative target distribution (uniform); (b) we present a new method for volatility forecasting using NoVaS ; (c) we show that the NoVaS methodology is applicable in situations where (global) stationarity fails such as the cases of local stationarity and/or structural breaks; (d) we show how to apply the NoVaS ideas in the case of returns with asymmetric distribution; and finally (e) we discuss the application of NoVaS to the problem of estimating value at risk (VaR). The NoVaS methodology allows for a flexible approach to inference and has immediate applications in the context of short time series and series that exhibit local behavior (e.g. breaks, regime switching etc.) We conduct an extensive simulation study on the predictive ability of the NoVaS approach and find that NoVaS forecasts lead to a much 'tighter' distribution of the forecasting performance measure for all data generating processes. This is especially relevant in the context of volatility predictions for risk management. We further illustrate the use of NoVaS for a number of real datasets and compare the forecasting performance of NoVaS -based volatility forecasts with realized and range-based volatility measures.

Suggested Citation

  • Dimitris N. Politis & Dimitrios D. Thomakos, 2007. "NoVaS Transformations: Flexible Inference for Volatility Forecasting," Working Paper series 44_07, Rimini Centre for Economic Analysis.
  • Handle: RePEc:rim:rimwps:44_07
    as

    Download full text from publisher

    File URL: http://www.rcea.org/RePEc/pdf/wp44_07.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Peter Reinhard Hansen & Asger Lunde & James M. Nason, 2003. "Choosing the Best Volatility Models: The Model Confidence Set Approach," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 65(s1), pages 839-861, December.
    2. Parkinson, Michael, 1980. "The Extreme Value Method for Estimating the Variance of the Rate of Return," The Journal of Business, University of Chicago Press, vol. 53(1), pages 61-65, January.
    3. Asger Lunde & Peter R. Hansen, 2005. "A forecast comparison of volatility models: does anything beat a GARCH(1,1)?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(7), pages 873-889.
    4. Hall, Peter & Yao, Qiwei, 2003. "Inference in ARCH and GARCH models with heavy-tailed errors," LSE Research Online Documents on Economics 5875, London School of Economics and Political Science, LSE Library.
    5. Nour Meddahi, 2001. "An Eigenfunction Approach for Volatility Modeling," CIRANO Working Papers 2001s-70, CIRANO.
    6. Ser-Huang Poon & Clive W.J. Granger, 2003. "Forecasting Volatility in Financial Markets: A Review," Journal of Economic Literature, American Economic Association, vol. 41(2), pages 478-539, June.
    7. Francq, Christian & ZakoI¨an, Jean-Michel, 2005. "The L2-structures of standard and switching-regime GARCH models," Stochastic Processes and their Applications, Elsevier, vol. 115(9), pages 1557-1582, September.
    8. Hansen, Peter Reinhard & Lunde, Asger, 2006. "Consistent ranking of volatility models," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 97-121.
    9. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    10. Patton, Andrew J., 2011. "Volatility forecast comparison using imperfect volatility proxies," Journal of Econometrics, Elsevier, vol. 160(1), pages 246-256, January.
    11. Hillebrand, Eric, 2005. "Neglecting parameter changes in GARCH models," Journal of Econometrics, Elsevier, vol. 129(1-2), pages 121-138.
    12. Torben G. Andersen & Tim Bollerslev & Nour Meddahi, 2004. "Analytical Evaluation Of Volatility Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 45(4), pages 1079-1110, November.
    13. Cai, Zongwu, 2002. "Regression Quantiles For Time Series," Econometric Theory, Cambridge University Press, vol. 18(1), pages 169-192, February.
    14. Hansen, Bruce E., 2006. "Interval forecasts and parameter uncertainty," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 377-398.
    15. Piotr Fryzlewicz & Theofanis Sapatinas & Suhasini Subba Rao, 2006. "A Haar--Fisz technique for locally stationary volatility estimation," Biometrika, Biometrika Trust, vol. 93(3), pages 687-704, September.
    16. Dimitris N. Politis, 2004. "A Heavy-Tailed Distribution for ARCH Residuals with Application to Volatility Prediction," Annals of Economics and Finance, Society for AEF, vol. 5(2), pages 283-298, November.
    17. Liang Peng, 2003. "Least absolute deviations estimation for ARCH and GARCH models," Biometrika, Biometrika Trust, vol. 90(4), pages 967-975, December.
    18. Peng, Liang & Yao, Qiwei, 2003. "Least absolute deviations estimation for ARCH and GARCH models," LSE Research Online Documents on Economics 5828, London School of Economics and Political Science, LSE Library.
    19. Lars Forsberg & Eric Ghysels, 2007. "Why Do Absolute Returns Predict Volatility So Well?," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 5(1), pages 31-67.
    20. Peter Hall & Qiwei Yao, 2003. "Inference in Arch and Garch Models with Heavy--Tailed Errors," Econometrica, Econometric Society, vol. 71(1), pages 285-317, January.
    21. Politis, Dimitris N., 2004. "A heavy-tailed distribution for ARCH residuals with application to volatility prediction," University of California at San Diego, Economics Working Paper Series qt7r89639x, Department of Economics, UC San Diego.
    22. Politis, Dimitris N., 2003. "Model-Free Volatility Prediction," University of California at San Diego, Economics Working Paper Series qt0648834b, Department of Economics, UC San Diego.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rim:rimwps:44_07. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Marco Savioli). General contact details of provider: http://edirc.repec.org/data/rcfeait.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.