IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

Model Selection and Testing of Conditional and Stochastic Volatility Models

  • Massimiliano Caporin

    (Department of Economics and Management "Marco Fanno", University of Padova)

  • Michael McAleer

    (Erasmus University Rotterdam, Tinbergen Institute, The Netherlands, and Institute of Economic Research, Kyoto University)

This paper focuses on the selection and comparison of alternative non-nested volatility models. We review the traditional in-sample methods commonly applied in the volatility framework, namely diagnostic checking procedures, information criteria, and conditions for the existence of moments and asymptotic theory, as well as the out-of-sample model selection approaches, such as mean squared error and Model Confidence Set approaches. The paper develops some innovative loss functions which are based on Value-at-Risk forecasts. Finally, we present an empirical application based on simple univariate volatility models, namely GARCH, GJR, EGARCH, and Stochastic Volatility that are widely used to capture asymmetry and leverage.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by Kyoto University, Institute of Economic Research in its series KIER Working Papers with number 724.

in new window

Length: 30pages
Date of creation: Sep 2010
Date of revision:
Handle: RePEc:kyo:wpaper:724
Contact details of provider: Postal: Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501
Phone: +81-75-753-7102
Fax: +81-75-753-7193
Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Massimiliano Caporin & Michael McAleer, 2010. "Ranking Multivariate GARCH Models by Problem Dimension," CARF F-Series CARF-F-219, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
  2. Ling, Shiqing & McAleer, Michael, 2002. "NECESSARY AND SUFFICIENT MOMENT CONDITIONS FOR THE GARCH(r,s) AND ASYMMETRIC POWER GARCH(r,s) MODELS," Econometric Theory, Cambridge University Press, vol. 18(03), pages 722-729, June.
  3. Neil Shephard & Ole E. Barndorff-Nielsen, 2006. "Designing realised kernels to measure the ex-post variation of equity prices in the presence of noise," Economics Series Working Papers 2006-W03, University of Oxford, Department of Economics.
  4. Sangjoon Kim & Neil Shephard, 1994. "Stochastic volatility: likelihood inference and comparison with ARCH models," Economics Papers 3., Economics Group, Nuffield College, University of Oxford.
  5. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
  6. Jun Yu, 2004. "On Leverage in a Stochastic Volatility Model," Econometric Society 2004 Far Eastern Meetings 506, Econometric Society.
  7. Jose A. Lopez, 1995. "Evaluating the predictive accuracy of volatility models," Research Paper 9524, Federal Reserve Bank of New York.
  8. Fiorentini, Gabriele & Calzolari, Giorgio & Panattoni, Lorenzo, 1996. "Analytic Derivatives and the Computation of GARCH Estimates," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(4), pages 399-417, July-Aug..
  9. Francis X. Diebold & Robert S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
  10. Bollerslev, Tim & Chou, Ray Y. & Kroner, Kenneth F., 1992. "ARCH modeling in finance : A review of the theory and empirical evidence," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 5-59.
  11. Danielsson, Jon, 1994. "Stochastic volatility in asset prices estimation with simulated maximum likelihood," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 375-400.
  12. Massimiliano Caporin & Michael McAleer, 2009. "Do We Really Need Both BEKK and DCC? A Tale of Two Covariance Models," CIRJE F-Series CIRJE-F-638, CIRJE, Faculty of Economics, University of Tokyo.
  13. Adam Clements & Mark Doolan & Stan Hurn & Ralf Becker, 2009. "Evaluating multivariate volatility forecasts," NCER Working Paper Series 41, National Centre for Econometric Research, revised 25 Nov 2009.
  14. Ling, Shiqing & McAleer, Michael, 2002. "Stationarity and the existence of moments of a family of GARCH processes," Journal of Econometrics, Elsevier, vol. 106(1), pages 109-117, January.
  15. Lawrence R. Glosten & Ravi Jagannathan & David E. Runkle, 1993. "On the relation between the expected value and the volatility of the nominal excess return on stocks," Staff Report 157, Federal Reserve Bank of Minneapolis.
  16. Hansen, Peter Reinhard, 2005. "A Test for Superior Predictive Ability," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 365-380, October.
  17. Nelson, Daniel B., 1990. "Stationarity and Persistence in the GARCH(1,1) Model," Econometric Theory, Cambridge University Press, vol. 6(03), pages 318-334, September.
  18. Jung-Hee Lee & B. Wade Brorsen, 1997. "A non-nested test of GARCH vs. EGARCH models," Applied Economics Letters, Taylor & Francis Journals, vol. 4(12), pages 765-768.
  19. Ole E. Barndorff-Nielsen & Shephard, 2002. "Econometric analysis of realized volatility and its use in estimating stochastic volatility models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(2), pages 253-280.
  20. Sébastien Laurent & Jeroen V.K. Rombouts & Francesco Violante, 2009. "On Loss Functions and Ranking Forecasting Performances of Multivariate Volatility Models," Cahiers de recherche 0948, CIRPEE.
  21. Manabu Asai & Michael McAleer, 2005. "Dynamic Asymmetric Leverage in Stochastic Volatility Models," Econometric Reviews, Taylor & Francis Journals, vol. 24(3), pages 317-332.
  22. Halbert White, 2000. "A Reality Check for Data Snooping," Econometrica, Econometric Society, vol. 68(5), pages 1097-1126, September.
  23. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
  24. Jacob A. Mincer & Victor Zarnowitz, 1969. "The Evaluation of Economic Forecasts," NBER Chapters, in: Economic Forecasts and Expectations: Analysis of Forecasting Behavior and Performance, pages 3-46 National Bureau of Economic Research, Inc.
  25. Ole E. Barndorff-Nielsen & Neil Shephard, 2002. "Estimating quadratic variation using realized variance," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 457-477.
  26. Bougerol, Philippe & Picard, Nico, 1992. "Stationarity of Garch processes and of some nonnegative time series," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 115-127.
  27. So, Mike K P & Li, W K & Lam, K, 2002. "A Threshold Stochastic Volatility Model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 21(7), pages 473-500, November.
  28. Masahito Kobayashi & Xiuhong Shi, 2005. "Testing for EGARCH Against Stochastic Volatility Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 26(1), pages 135-150, 01.
  29. McAleer, Michael & Chan, Felix & Marinova, Dora, 2007. "An econometric analysis of asymmetric volatility: Theory and application to patents," Journal of Econometrics, Elsevier, vol. 139(2), pages 259-284, August.
  30. Manabu Asai & Michael McAleer & Jun Yu, 2006. "Multivariate Stochastic Volatility: A Review," Econometric Reviews, Taylor & Francis Journals, vol. 25(2-3), pages 145-175.
  31. McAleer, Michael, 2005. "Automated Inference And Learning In Modeling Financial Volatility," Econometric Theory, Cambridge University Press, vol. 21(01), pages 232-261, February.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:kyo:wpaper:724. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ryo Okui)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.