IDEAS home Printed from https://ideas.repec.org/p/ucm/doicae/1113.html
   My bibliography  Save this paper

Aggregation, Heterogeneous Autoregression and Volatility of Daily International Tourist Arrivals and Exchange Rates

Author

Listed:
  • Chia-Lin Chang

    () (Department of Applied Economics, Department of Finance, National Chung Hsing University, Taichung, Taiwan)

  • Michael McAleer

    (Econometrisch Instituut (Econometric Institute), Faculteit der Economische Wetenschappen (Erasmus School of Economics) Erasmus Universiteit, Tinbergen Instituut (Tinbergen Institute).)

Abstract

Tourism is a major source of service receipts for many countries, including Taiwan. The two leading tourism countries for Taiwan are Japan and USA, which are sources of short and long haul tourism, respectively. As a strong domestic currency can have adverse effects on international tourist arrivals through the price effect, daily data from 1 January 1990 to 31 December 2008 are used to model the world price, exchange rates, and tourist arrivals from the world, USA and Japan to Taiwan, and their associated volatility. Inclusion of the exchange rate and its volatility captures approximate daily and weekly price and price volatility effects on world, US and Japanese tourist arrivals to Taiwan. The Heterogeneous Autoregressive (HAR) model is used to approximate the slowly decaying correlations associated with the long memory properties in daily and weekly exchange rates and international tourist arrivals, to test whether alternative short and long run estimates of conditional volatility are sensitive to the long memory in the conditional mean, to examine asymmetry and leverage in volatility, and to examine the effects of temporal and spatial aggregation. The approximate price and price volatility effects tend to be different, with the exchange rate typically having the expected negative impact on tourist arrivals to Taiwan, whereas exchange rate volatility can have positive or negative effects on tourist arrivals to Taiwan. For policy purposes, the empirical results suggest that an arbitrary choice of data frequency or spatial aggregation will not lead to robust findings as they are generally not independent of the level of aggregation used.

Suggested Citation

  • Chia-Lin Chang & Michael McAleer, 2011. "Aggregation, Heterogeneous Autoregression and Volatility of Daily International Tourist Arrivals and Exchange Rates," Documentos de Trabajo del ICAE 2011-13, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
  • Handle: RePEc:ucm:doicae:1113
    as

    Download full text from publisher

    File URL: http://eprints.ucm.es/12730/1/1113.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. McAleer, Michael & Chan, Felix & Marinova, Dora, 2007. "An econometric analysis of asymmetric volatility: Theory and application to patents," Journal of Econometrics, Elsevier, vol. 139(2), pages 259-284, August.
    2. McAleer, Michael & Medeiros, Marcelo C., 2008. "A multiple regime smooth transition Heterogeneous Autoregressive model for long memory and asymmetries," Journal of Econometrics, Elsevier, vol. 147(1), pages 104-119, November.
    3. Ling, Shiqing & McAleer, Michael, 2003. "Asymptotic Theory For A Vector Arma-Garch Model," Econometric Theory, Cambridge University Press, vol. 19(02), pages 280-310, April.
    4. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    5. Massimiliano Caporin & Michael McAleer, 2012. "Do We Really Need Both Bekk And Dcc? A Tale Of Two Multivariate Garch Models," Journal of Economic Surveys, Wiley Blackwell, vol. 26(4), pages 736-751, September.
    6. Michael McAleer & Juan-Angel Jimenez-Martin & Teodosio Perez-Amaral, 2009. "What Happened to Risk Management During the 2008-09 Financial Crisis?," CARF F-Series CARF-F-155, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    7. Chia-Lin Chang & Michael Mcaleer, 2009. "Daily Tourist Arrivals, Exchange Rates and Voatility for Korea and Taiwan," Korean Economic Review, Korean Economic Association, vol. 25, pages 241-267.
    8. Michael McAleer, 2009. "The Ten Commandments For Optimizing Value-At-Risk And Daily Capital Charges," Journal of Economic Surveys, Wiley Blackwell, vol. 23(5), pages 831-849, December.
    9. Ling, Shiqing & McAleer, Michael, 2002. "NECESSARY AND SUFFICIENT MOMENT CONDITIONS FOR THE GARCH(r,s) AND ASYMMETRIC POWER GARCH(r,s) MODELS," Econometric Theory, Cambridge University Press, vol. 18(03), pages 722-729, June.
    10. Dickey, David A & Fuller, Wayne A, 1981. "Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root," Econometrica, Econometric Society, vol. 49(4), pages 1057-1072, June.
    11. Jose Angelo Divino & Michael McAleer, 2009. "Modelling the Growth and Volatility in Daily International Mass Tourism to Peru," Documentos de Trabajo del ICAE 2009-15, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    12. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    13. Juan-Ángel Jiménez-Martín & Michael McAleer & Teodosio Pérez-Amaral, 2009. "Optimal Risk Management Before, During and After the 2008-09 Financial Crisis," Documentos de Trabajo del ICAE 2009-20, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    14. Shiqing Ling & Michael McAleer, 2001. "On Adaptive Estimation in Nonstationary ARMA Models with GARCH Errors," ISER Discussion Paper 0548, Institute of Social and Economic Research, Osaka University.
    15. Michael McAleer & Juan-Angel Jimenez-Martin & Teodosio Pérez-Amaral, 0000. "Has the Basel II Accord Encouraged Risk Management during the 2008-09 Financial Crisis?," Tinbergen Institute Discussion Papers 09-039/4, Tinbergen Institute.
    16. Massimiliano Caporin & Michael McAleer, 2009. "Do We Really Need Both BEKK and DCC? A Tale of Two Covariance Models," CARF F-Series CARF-F-156, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    17. Lee, Sang-Won & Hansen, Bruce E., 1994. "Asymptotic Theory for the Garch(1,1) Quasi-Maximum Likelihood Estimator," Econometric Theory, Cambridge University Press, vol. 10(01), pages 29-52, March.
    18. McAleer, Michael, 2005. "Automated Inference And Learning In Modeling Financial Volatility," Econometric Theory, Cambridge University Press, vol. 21(01), pages 232-261, February.
    19. Shareef, Riaz & McAleer, Michael, 2008. "Modelling international tourism demand and uncertainty in Maldives and Seychelles: A portfolio approach," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 78(2), pages 459-468.
    20. Jeantheau, Thierry, 1998. "Strong Consistency Of Estimators For Multivariate Arch Models," Econometric Theory, Cambridge University Press, vol. 14(01), pages 70-86, February.
    21. Ling, Shiqing & McAleer, Michael, 2002. "Stationarity and the existence of moments of a family of GARCH processes," Journal of Econometrics, Elsevier, vol. 106(1), pages 109-117, January.
    22. McAleer, M.J. & Jiménez-Martín, J.A. & Pérez-Amaral, T., 2008. "A decision rule to minimize daily capital charges in forecasting value-at-risk," Econometric Institute Research Papers EI 2008-34, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    23. Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 7(2), pages 174-196, Spring.
    24. Li, W K & Ling, Shiqing & McAleer, Michael, 2002. " Recent Theoretical Results for Time Series Models with GARCH Errors," Journal of Economic Surveys, Wiley Blackwell, vol. 16(3), pages 245-269, July.
    25. Chia-Lin Chang & Michael McAleer & Dan Slottje, 2009. "Modelling International Tourist Arrivals and Volatility: An Application to Taiwan," "Marco Fanno" Working Papers 0097, Dipartimento di Scienze Economiche "Marco Fanno".
    26. Divino, Jose Angelo & McAleer, Michael, 2010. "Modelling and forecasting daily international mass tourism to Peru," Tourism Management, Elsevier, vol. 31(6), pages 846-854.
    27. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chang, Chia-Lin, 2015. "Modelling a latent daily Tourism Financial Conditions Index," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 113-126.
    2. repec:eee:touman:v:61:y:2017:i:c:p:248-260 is not listed on IDEAS
    3. Chia-Lin Chang & Thanchanok Khamkaew & Michael McAleer, 2010. "Estimating Price Effects in an Almost Ideal Demand Model of Outbound Thai Tourism to East Asia," CIRJE F-Series CIRJE-F-735, CIRJE, Faculty of Economics, University of Tokyo.
    4. Chang, Chia-Lin & Hsu, Hui-Kuang & McAleer, Michael, 2013. "Is small beautiful? Size effects of volatility spillovers for firm performance and exchange rates in tourism," The North American Journal of Economics and Finance, Elsevier, vol. 26(C), pages 519-534.
    5. repec:eee:touman:v:48:y:2015:i:c:p:268-282 is not listed on IDEAS

    More about this item

    Keywords

    International tourist arrivals; exchange rates; exchange rate volatility; GARCH; GJR; EGARCH; HAR; long memory; temporal and spatial aggregation; daily and weekly effects; asymmetry; leverage.;

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • F31 - International Economics - - International Finance - - - Foreign Exchange
    • G18 - Financial Economics - - General Financial Markets - - - Government Policy and Regulation
    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ucm:doicae:1113. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Águeda González Abad) or () or (). General contact details of provider: http://edirc.repec.org/data/feucmes.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.