IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

How Volatile is ENSO?

  • LanFen Chu

    (Institute of Economics, Academia Sinica)

  • Michael McAleer

    (Econometric Institute, Erasmus School of Economics, Erasmus University Rotterdam and Tinbergen Institute and Center for International Research on the Japanese Economy (CIRJE), Faculty of Economics, University of Tokyo)

  • Chi-Chung Chen

    (Department of Applied Economics, National Chung Hsing University)

The El Ninos Southern Oscillations (ENSO) is a periodical phenomenon of climatic interannual variability which could be measured through either the Southern Oscillation Index (SOI) or the Sea Surface Temperature (SST) Index. The main purpose of this paper is to analyze these two indexes in order to capture ENSO volatility. The empirical results show that both the ARMA(1,1)-GARCH(1,1) and ARMA(3,2)-GJR(1,1) models are suitable for modelling ENSO volatility. Moreover, 1998 is a turning point for the volatility of SOI, and the ENSO volatility has became stronger since 1998 which indicates that the ENSO strength has increased.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.cirje.e.u-tokyo.ac.jp/research/dp/2009/2009cf635.pdf
Download Restriction: no

Paper provided by CIRJE, Faculty of Economics, University of Tokyo in its series CIRJE F-Series with number CIRJE-F-635.

as
in new window

Length: 32 pages
Date of creation: Aug 2009
Date of revision:
Handle: RePEc:tky:fseres:2009cf635
Contact details of provider: Postal: Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033
Phone: +81-3-5841-5644
Fax: +81-3-5841-8294
Web page: http://www.cirje.e.u-tokyo.ac.jp/index.html
Email:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Shiqing Ling & Michael McAleer, 2001. "On Adaptive Estimation in Nonstationary ARMA Models with GARCH Errors," ISER Discussion Paper 0548, Institute of Social and Economic Research, Osaka University.
  2. Jushan Bai & Pierre Perron, 1998. "Estimating and Testing Linear Models with Multiple Structural Changes," Econometrica, Econometric Society, vol. 66(1), pages 47-78, January.
  3. Allan D. Brunner, 2000. "El Nino and World Primary Commodity Prices: Warm Water or Hot Air?," IMF Working Papers 00/203, International Monetary Fund.
  4. Hall, Anthony D. & Skalin, Joakim & Teräsvirta, Timo, 1998. "A nonlinear time series model of El Niño," SSE/EFI Working Paper Series in Economics and Finance 263, Stockholm School of Economics.
  5. McAleer, Michael & Chan, Felix & Marinova, Dora, 2007. "An econometric analysis of asymmetric volatility: Theory and application to patents," Journal of Econometrics, Elsevier, vol. 139(2), pages 259-284, August.
  6. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-70, March.
  7. Lee, Sang-Won & Hansen, Bruce E., 1994. "Asymptotic Theory for the Garch(1,1) Quasi-Maximum Likelihood Estimator," Econometric Theory, Cambridge University Press, vol. 10(01), pages 29-52, March.
  8. Jose Angelo Divino & Michael McAleer, 2009. "Modelling and Forecasting Daily International Mass Tourism to Peru," CIRJE F-Series CIRJE-F-651, CIRJE, Faculty of Economics, University of Tokyo.
  9. Shiqing Ling & Michael McAleer, 2001. "Asymptotic Theory for a Vector ARMA-GARCH Model," ISER Discussion Paper 0549, Institute of Social and Economic Research, Osaka University.
  10. Tim Bollerslev, 1986. "Generalized autoregressive conditional heteroskedasticity," EERI Research Paper Series EERI RP 1986/01, Economics and Econometrics Research Institute (EERI), Brussels.
  11. Shiqing Ling & Michael McAleer, 2001. "Stationarity and the Existence of Moments of a Family of GARCH Processes," ISER Discussion Paper 0535, Institute of Social and Economic Research, Osaka University.
  12. Donald W.K. Andrews, 1990. "Tests for Parameter Instability and Structural Change with Unknown Change Point," Cowles Foundation Discussion Papers 943, Cowles Foundation for Research in Economics, Yale University.
  13. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
  14. Li, W K & Ling, Shiqing & McAleer, Michael, 2002. " Recent Theoretical Results for Time Series Models with GARCH Errors," Journal of Economic Surveys, Wiley Blackwell, vol. 16(3), pages 245-69, July.
  15. Dickey, David A & Fuller, Wayne A, 1981. "Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root," Econometrica, Econometric Society, vol. 49(4), pages 1057-72, June.
  16. Shiqing Ling & Michael McAleer, 2001. "Necessary and Sufficient Moment Conditions for the GARCH(r,s) and Asymmetric Power GARCH(r,s) Models," ISER Discussion Paper 0534, Institute of Social and Economic Research, Osaka University.
  17. Guy Debelle & Glenn Stevens, 1995. "Monetary Policy Goals for Inflation in Australia," RBA Research Discussion Papers rdp9503, Reserve Bank of Australia.
  18. Bruce E. Hansen, 2001. "The New Econometrics of Structural Change: Dating Breaks in U.S. Labour Productivity," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 117-128, Fall.
  19. BAI, Jushan & PERRON, Pierre, 1998. "Computation and Analysis of Multiple Structural-Change Models," Cahiers de recherche 9807, Universite de Montreal, Departement de sciences economiques.
  20. Carrasco, Marine & Chen, Xiaohong, 2002. "Mixing And Moment Properties Of Various Garch And Stochastic Volatility Models," Econometric Theory, Cambridge University Press, vol. 18(01), pages 17-39, February.
  21. McAleer, Michael, 2005. "Automated Inference And Learning In Modeling Financial Volatility," Econometric Theory, Cambridge University Press, vol. 21(01), pages 232-261, February.
  22. Jeantheau, Thierry, 1998. "Strong Consistency Of Estimators For Multivariate Arch Models," Econometric Theory, Cambridge University Press, vol. 14(01), pages 70-86, February.
  23. Suhejla Hoti & Michael McAleer & Laurent L. Pauwels, 2004. "Modelling Environmental Risk," IHEID Working Papers 08-2004, Economics Section, The Graduate Institute of International Studies.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:tky:fseres:2009cf635. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (CIRJE administrative office)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.