IDEAS home Printed from https://ideas.repec.org/p/cbt/econwp/10-38.html
   My bibliography  Save this paper

Modelling Conditional Correlations in the Volatility of Asian Rubber Spot and Futures Returns

Author

Listed:

Abstract

Asia is presently the most important market for the production and consumption of natural rubber. World prices of rubber are not only subject to changes in demand, but also to speculation regarding future markets. Japan and Singapore are the major futures markets for rubber, while Thailand is one of the world’s largest producers of rubber. As rubber prices are influenced by external markets, it is important to analyse the relationship between the relevant markets in Thailand, Japan and Singapore. The analysis is conducted using several alternative multivariate GARCH models. The empirical results indicate that the constant conditional correlations arising from the CCC model lie in the low to medium range. The results from the VARMA-GARCH model and the VARMA-AGARCH model suggest the presence of volatility spillovers and asymmetric effects of positive and negative return shocks on conditional volatility. Finally, the DCC model suggests that the conditional correlations can vary dramatically over time. In general, the dynamic conditional correlations in rubber spot and futures returns shocks can be independent or interdependent.

Suggested Citation

  • Chia-Lin Chang & Thanchanok Khamkaew & Michael McAleer & Roengchai Tansuchat, 2010. "Modelling Conditional Correlations in the Volatility of Asian Rubber Spot and Futures Returns," Working Papers in Economics 10/38, University of Canterbury, Department of Economics and Finance.
  • Handle: RePEc:cbt:econwp:10/38
    as

    Download full text from publisher

    File URL: http://www.econ.canterbury.ac.nz/RePEc/cbt/econwp/1038.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Ling, Shiqing & McAleer, Michael, 2003. "Asymptotic Theory For A Vector Arma-Garch Model," Econometric Theory, Cambridge University Press, vol. 19(02), pages 280-310, April.
    2. Michael McAleer & Suhejla Hoti & Felix Chan, 2009. "Structure and Asymptotic Theory for Multivariate Asymmetric Conditional Volatility," Econometric Reviews, Taylor & Francis Journals, vol. 28(5), pages 422-440.
    3. McAleer, Michael, 2005. "Automated Inference And Learning In Modeling Financial Volatility," Econometric Theory, Cambridge University Press, vol. 21(01), pages 232-261, February.
    4. Nicholas Apergis & Anthony Rezitis, 2003. "Food price volatility and macroeconomic factor volatility: 'heat waves' or 'meteor showers'?," Applied Economics Letters, Taylor & Francis Journals, vol. 10(3), pages 155-160.
    5. Bollerslev, Tim, 1990. "Modelling the Coherence in Short-run Nominal Exchange Rates: A Multivariate Generalized ARCH Model," The Review of Economics and Statistics, MIT Press, vol. 72(3), pages 498-505, August.
    6. Jae H. Kim & Hristos Doucouliagos, 2005. "Realized Volatility and Correlation in Grain Futures Markets: Testing for Spill-Over Effects," Monash Econometrics and Business Statistics Working Papers 22/05, Monash University, Department of Econometrics and Business Statistics.
    7. Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-350, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tao, Juan & Green, Christopher J., 2012. "Asymmetries, causality and correlation between FTSE100 spot and futures: A DCC-TGARCH-M analysis," International Review of Financial Analysis, Elsevier, vol. 24(C), pages 26-37.
    2. Khalfaoui, R & Boutahar, M, 2012. "Portfolio risk evaluation: An approach based on dynamic conditional correlations models and wavelet multiresolution analysis," MPRA Paper 41624, University Library of Munich, Germany.
    3. Chia-Lin Chang & Michael McAleer & Roengchai Tansuchat, 2009. "Modelling Conditional Correlations for Risk Diversification in Crude Oil Markets," CIRJE F-Series CIRJE-F-640, CIRJE, Faculty of Economics, University of Tokyo.
    4. Yen-Hsien Lee, 2014. "An international analysis of REITs and stock portfolio management based on dynamic conditional correlation models," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 28(2), pages 165-180, May.
    5. Yen-Hsien Lee & Hao Fang & Wei-Fan SU, 2014. "Effectiveness of Portfolio Diversification and the Dynamic Relationship between Stock and Currency Markets in the Emerging Eastern European and Russian Markets," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 64(4), pages 296-311, September.

    More about this item

    Keywords

    Multivariate GARCH; volatility spillovers; conditional correlations; spot returns; futures returns;

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill
    • Q14 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - Agricultural Finance

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cbt:econwp:10/38. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Albert Yee). General contact details of provider: http://edirc.repec.org/data/decannz.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.