IDEAS home Printed from
   My bibliography  Save this article

Generalized Autoregressive Conditional Correlation


  • McAleer, Michael
  • Chan, Felix
  • Hoti, Suhejla
  • Lieberman, Offer


This paper develops a generalized autoregressive conditional correlation (GARCC) model when the standardized residuals follow a random coefficient vector autoregressive process. As a multivariate generalization of the Tsay (1987, Journal of the American Statistical Association 82, 590–604) random coefficient autoregressive (RCA) model, the GARCC model provides a motivation for the conditional correlations to be time varying. GARCC is also more general than the Engle (2002, Journal of Business & Economic Statistics 20, 339–350) dynamic conditional correlation (DCC) and the Tse and Tsui (2002, Journal of Business & Economic Statistics 20, 351–362) varying conditional correlation (VCC) models and does not impose unduly restrictive conditions on the parameters of the DCC model. The structural properties of the GARCC model, specifically, the analytical forms of the regularity conditions, are derived, and the asymptotic theory is established. The Baba, Engle, Kraft, and Kroner (BEKK) model of Engle and Kroner (1995, Econometric Theory 11, 122–150) is demonstrated to be a special case of a multivariate RCA process. A likelihood ratio test is proposed for several special cases of GARCC. The empirical usefulness of GARCC and the practicality of the likelihood ratio test are demonstrated for the daily returns of the Standard and Poor's 500, Nikkei, and Hang Seng indexes.

Suggested Citation

  • McAleer, Michael & Chan, Felix & Hoti, Suhejla & Lieberman, Offer, 2008. "Generalized Autoregressive Conditional Correlation," Econometric Theory, Cambridge University Press, vol. 24(06), pages 1554-1583, December.
  • Handle: RePEc:cup:etheor:v:24:y:2008:i:06:p:1554-1583_08

    Download full text from publisher

    File URL:
    File Function: link to article abstract page
    Download Restriction: no

    References listed on IDEAS

    1. Hadi, Ali S. & Luceno, Alberto, 1997. "Maximum trimmed likelihood estimators: a unified approach, examples, and algorithms," Computational Statistics & Data Analysis, Elsevier, vol. 25(3), pages 251-272, August.
    2. Powell, James L, 1986. "Symmetrically Trimmed Least Squares Estimation for Tobit Models," Econometrica, Econometric Society, vol. 54(6), pages 1435-1460, November.
    3. Davidson, James, 1994. "Stochastic Limit Theory: An Introduction for Econometricians," OUP Catalogue, Oxford University Press, number 9780198774037, June.
    4. Gerfin, Michael, 1996. "Parametric and Semi-parametric Estimation of the Binary Response Model of Labor Market Participation," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(3), pages 321-339, May-June.
    5. Kelly, Morgan, 1997. "Do Noise Traders Influence Stock Prices?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 29(3), pages 351-363, August.
    6. Pakes, Ariel & Pollard, David, 1989. "Simulation and the Asymptotics of Optimization Estimators," Econometrica, Econometric Society, vol. 57(5), pages 1027-1057, September.
    7. Tableman, Mara, 1994. "The asymptotics of the least trimmed absolute deviations (LTAD) estimator," Statistics & Probability Letters, Elsevier, vol. 19(5), pages 387-398, April.
    8. Gallant, A Ronald & Nychka, Douglas W, 1987. "Semi-nonparametric Maximum Likelihood Estimation," Econometrica, Econometric Society, vol. 55(2), pages 363-390, March.
    9. Knez, Peter J & Ready, Mark J, 1997. " On the Robustness of Size and Book-to-Market in Cross-Sectional Regressions," Journal of Finance, American Finance Association, vol. 52(4), pages 1355-1382, September.
    10. Shinichi Sakata & Halbert White, 1998. "High Breakdown Point Conditional Dispersion Estimation with Application to S&P 500 Daily Returns Volatility," Econometrica, Econometric Society, vol. 66(3), pages 529-568, May.
    11. Zinde-Walsh, Victoria, 2002. "Asymptotic Theory For Some High Breakdown Point Estimators," Econometric Theory, Cambridge University Press, vol. 18(05), pages 1172-1196, October.
    12. Zaman, Asad & Rousseeuw, Peter J. & Orhan, Mehmet, 2001. "Econometric applications of high-breakdown robust regression techniques," Economics Letters, Elsevier, vol. 71(1), pages 1-8, April.
    13. Hawkins, Douglas M. & Olive, David, 1999. "Applications and algorithms for least trimmed sum of absolute deviations regression," Computational Statistics & Data Analysis, Elsevier, vol. 32(2), pages 119-134, December.
    14. Andrews, Donald W.K., 1988. "Laws of Large Numbers for Dependent Non-Identically Distributed Random Variables," Econometric Theory, Cambridge University Press, vol. 4(03), pages 458-467, December.
    15. Jonathan R. W. Temple, 1998. "Robustness tests of the augmented Solow model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 13(4), pages 361-375.
    Full references (including those not matched with items on IDEAS)

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:24:y:2008:i:06:p:1554-1583_08. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Keith Waters). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.