IDEAS home Printed from
   My bibliography  Save this article

Linear-representation Based Estimation of Stochastic Volatility Models




A new way of estimating stochastic volatility models is developed. The method is based on the existence of autoregressive moving average (ARMA) representations for powers of the log-squared observations. These representations allow to build a criterion obtained by weighting the sums of squared innovations corresponding to the different ARMA models. The estimator obtained by minimizing the criterion with respect to the parameters of interest is shown to be consistent and asymptotically normal. Monte-Carlo experiments illustrate the finite sample properties of the estimator. The method has potential applications to other non-linear time-series models. Copyright 2006 Board of the Foundation of the Scandinavian Journal of Statistics..

Suggested Citation

  • Christian Francq & Jean-Michel Zakoïan, 2006. "Linear-representation Based Estimation of Stochastic Volatility Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 33(4), pages 785-806.
  • Handle: RePEc:bla:scjsta:v:33:y:2006:i:4:p:785-806

    Download full text from publisher

    File URL:
    File Function: link to full text
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Kleinow, Torsten, 2002. "Testing the diffusion coefficient," SFB 373 Discussion Papers 2002,38, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    2. Vasicek, Oldrich, 1977. "An equilibrium characterization of the term structure," Journal of Financial Economics, Elsevier, vol. 5(2), pages 177-188, November.
    3. Gerety, Mason S & Mulherin, J Harold, 1994. "Price Formation on Stock Exchanges: The Evolution of Trading within the Day," Review of Financial Studies, Society for Financial Studies, vol. 7(3), pages 609-629.
    4. Vasicek, Oldrich Alfonso, 1977. "Abstract: An Equilibrium Characterization of the Term Structure," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 12(04), pages 627-627, November.
    5. Barndorff-Nielsen, Ole Eiler & Graversen, Svend Erik & Jacod, Jean & Podolskij, Mark, 2004. "A central limit theorem for realised power and bipower variations of continuous semimartingales," Technical Reports 2004,51, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    6. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters,in: Theory Of Valuation, chapter 5, pages 129-164 World Scientific Publishing Co. Pte. Ltd..
    7. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    8. Constantinides, George M, 1992. "A Theory of the Nominal Term Structure of Interest Rates," Review of Financial Studies, Society for Financial Studies, vol. 5(4), pages 531-552.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. repec:imd:wpaper:wp2010-25 is not listed on IDEAS
    2. Breitung, Jörg & Hafner, Christian M., 2016. "A simple model for now-casting volatility series," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1247-1255.
    3. Sucarrat, Genaro & Grønneberg, Steffen & Escribano, Alvaro, 2016. "Estimation and inference in univariate and multivariate log-GARCH-X models when the conditional density is unknown," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 582-594.
    4. repec:spr:stmapp:v:26:y:2017:i:3:d:10.1007_s10260-016-0373-8 is not listed on IDEAS
    5. Boubacar Mainassara, Y. & Carbon, M. & Francq, C., 2012. "Computing and estimating information matrices of weak ARMA models," Computational Statistics & Data Analysis, Elsevier, vol. 56(2), pages 345-361.
    6. Sucarrat, Genaro & Escribano, Álvaro, 2010. "The power log-GARCH model," UC3M Working papers. Economics we1013, Universidad Carlos III de Madrid. Departamento de Economía.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:33:y:2006:i:4:p:785-806. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.