IDEAS home Printed from https://ideas.repec.org/a/cup/etheor/v28y2012i03p509-547_00.html
   My bibliography  Save this article

Nonlinear Cointegrating Regression Under Weak Identification

Author

Listed:
  • Shi, Xiaoxia
  • Phillips, Peter C.B.

Abstract

An asymptotic theory is developed for a weakly identified cointegrating regression model in which the regressor is a nonlinear transformation of an integrated process. Weak identification arises from the presence of a loading coefficient for the nonlinear function that may be close to zero. In that case, standard nonlinear cointegrating limit theory does not provide good approximations to the finite-sample distributions of nonlinear least squares estimators, resulting in potentially misleading inference. A new local limit theory is developed that approximates the finite-sample distributions of the estimators uniformly well irrespective of the strength of the identification. An important technical component of this theory involves new results showing the uniform weak convergence of sample covariances involving nonlinear functions to mixed normal and stochastic integral limits. Based on these asymptotics, we construct confidence intervals for the loading coefficient and the nonlinear transformation parameter and show that these confidence intervals have correct asymptotic size. As in other cases of nonlinear estimation with integrated processes and unlike stationary process asymptotics, the properties of the nonlinear transformations affect the asymptotics and, in particular, give rise to parameter dependent rates of convergence and differences between the limit results for integrable and asymptotically homogeneous functions.

Suggested Citation

  • Shi, Xiaoxia & Phillips, Peter C.B., 2012. "Nonlinear Cointegrating Regression Under Weak Identification," Econometric Theory, Cambridge University Press, vol. 28(03), pages 509-547, June.
  • Handle: RePEc:cup:etheor:v:28:y:2012:i:03:p:509-547_00
    as

    Download full text from publisher

    File URL: http://journals.cambridge.org/abstract_S0266466611000648
    File Function: link to article abstract page
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Giacomini, Raffaella & Granger, Clive W. J., 2004. "Aggregation of space-time processes," Journal of Econometrics, Elsevier, vol. 118(1-2), pages 7-26.
    2. Robert de Jong, 2004. "Nonlinear estimators with integrated regressors but without exogeneity," Econometric Society 2004 North American Winter Meetings 324, Econometric Society.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peter C. B. Phillips & Sainan Jin, 2014. "Testing the Martingale Hypothesis," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(4), pages 537-554, October.
    2. Xu Cheng, 2014. "Uniform Inference in Nonlinear Models with Mixed Identification Strength," PIER Working Paper Archive 14-018, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    3. Baek, Yae In & Cho, Jin Seo & Phillips, Peter C.B., 2015. "Testing linearity using power transforms of regressors," Journal of Econometrics, Elsevier, vol. 187(1), pages 376-384.
    4. Chan, Nigel & Wang, Qiying, 2015. "Nonlinear regressions with nonstationary time series," Journal of Econometrics, Elsevier, vol. 185(1), pages 182-195.
    5. repec:wyi:journl:002195 is not listed on IDEAS
    6. Cheng, Xu, 2015. "Robust inference in nonlinear models with mixed identification strength," Journal of Econometrics, Elsevier, vol. 189(1), pages 207-228.
    7. Chen, Haiqiang & Fang, Ying & Li, Yingxing, 2015. "Estimation And Inference For Varying-Coefficient Models With Nonstationary Regressors Using Penalized Splines," Econometric Theory, Cambridge University Press, vol. 31(04), pages 753-777, August.
    8. Andrews, Donald W.K. & Cheng, Xu, 2014. "Gmm Estimation And Uniform Subvector Inference With Possible Identification Failure," Econometric Theory, Cambridge University Press, vol. 30(02), pages 287-333, April.

    More about this item

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:28:y:2012:i:03:p:509-547_00. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Keith Waters). General contact details of provider: http://journals.cambridge.org/jid_ECT .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.