IDEAS home Printed from https://ideas.repec.org/a/cup/etheor/v31y2015i04p778-810_00.html

Robust Estimation And Inference For Threshold Models With Integrated Regressors

Author

Listed:
  • Chen, Haiqiang

Abstract

This paper studies the robust estimation and inference of threshold models with integrated regressors. We derive the asymptotic distribution of the profiled least squares (LS) estimator under the diminishing threshold effect assumption that the size of the threshold effect converges to zero. Depending on how rapidly this sequence converges, the model may be identified or only weakly identified and asymptotic theorems are developed for both cases. As the convergence rate is unknown in practice, a model-selection procedure is applied to determine the model identification strength and to construct robust confidence intervals, which have the correct asymptotic size irrespective of the magnitude of the threshold effect. The model is then generalized to incorporate endogeneity and serial correlation in error terms, under which, we design a Cochrane–Orcutt feasible generalized least squares (FGLS) estimator which enjoys efficiency gains and robustness against different error specifications, including both I(0) and I(1) errors. Based on this FGLS estimator, we further develop a sup-Wald statistic to test for the existence of the threshold effect. Monte Carlo simulations show that our estimators and test statistics perform well.

Suggested Citation

  • Chen, Haiqiang, 2015. "Robust Estimation And Inference For Threshold Models With Integrated Regressors," Econometric Theory, Cambridge University Press, vol. 31(4), pages 778-810, August.
  • Handle: RePEc:cup:etheor:v:31:y:2015:i:04:p:778-810_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0266466614000553/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lixiong Yang, 2022. "Threshold mixed data sampling (TMIDAS) regression models with an application to GDP forecast errors," Empirical Economics, Springer, vol. 62(2), pages 533-551, February.
    2. Lixiong Yang & Chingnun Lee & I‐Po Chen, 2021. "Threshold model with a time‐varying threshold based on Fourier approximation," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(4), pages 406-430, July.
    3. Lixiong Yang, 2023. "Variable selection in threshold model with a covariate-dependent threshold," Empirical Economics, Springer, vol. 65(1), pages 189-202, July.
    4. Fukang Zhu & Mengya Liu & Shiqing Ling & Zongwu Cai, 2020. "Testing for Structural Change of Predictive Regression Model to Threshold Predictive Regression Model," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202021, University of Kansas, Department of Economics, revised Dec 2020.
    5. Ebrahimi Salari, Taghi & Naji Meidani, Ali Akbar & Shabani Koshalshahi, Zeinab & Ajori Ayask, Amir Abbas, 2022. "The threshold effect of HDI on the relationship between financial development and oil revenues," Resources Policy, Elsevier, vol. 76(C).
    6. Christis Katsouris, 2023. "Estimation and Inference in Threshold Predictive Regression Models with Locally Explosive Regressors," Papers 2305.00860, arXiv.org, revised May 2023.
    7. Hasanov, Fakhri J. & Aliyev, Ruslan & Taskin, Dilvin & Suleymanov, Elchin, 2023. "Oil rents and non-oil economic growth in CIS oil exporters. The role of financial development," Resources Policy, Elsevier, vol. 82(C).

    More about this item

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:31:y:2015:i:04:p:778-810_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/ect .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.