IDEAS home Printed from https://ideas.repec.org/a/spr/empeco/v62y2022i2d10.1007_s00181-021-02028-0.html
   My bibliography  Save this article

Threshold mixed data sampling (TMIDAS) regression models with an application to GDP forecast errors

Author

Listed:
  • Lixiong Yang

    (Lanzhou University)

Abstract

For modeling the threshold effect in parameters of the mixed data sampling (MIDAS) models, this paper introduces a model called threshold mixed data sampling (TMIDAS) regression, which allows for a threshold effect in the relationship between dependent and explanatory variables sampled at different frequencies, and the explanatory variables being sampled at a frequency higher than the dependent variable. We develop the estimation procedure of the proposed model and suggest test statistics for threshold effect and the equal weighting scheme used typically in aggregating higher-frequency data before estimating econometric models. Monte Carlo simulations are conducted to examine the performance properties of the estimation and testing procedures, and compare the forecasting performance of the TMIDAS relative to the Markov-switching (MS-)MIDAS and MIDAS models. Our simulation results point out that the estimation and testing procedures work well in finite samples, and the proposed model has a good forecasting performance. We apply the TMIDAS model to investigate presence and pattern of cyclical bias in quarterly GDP forecast errors, and compare the out-of-sample performance of the TMIDAS relative to the MS-MIDAS and MIDAS models for GDP forecast errors. Both simulation and empirical results demonstrate the usefulness of TMIDAS.

Suggested Citation

  • Lixiong Yang, 2022. "Threshold mixed data sampling (TMIDAS) regression models with an application to GDP forecast errors," Empirical Economics, Springer, vol. 62(2), pages 533-551, February.
  • Handle: RePEc:spr:empeco:v:62:y:2022:i:2:d:10.1007_s00181-021-02028-0
    DOI: 10.1007/s00181-021-02028-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00181-021-02028-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00181-021-02028-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eric Ghysels & Arthur Sinko & Rossen Valkanov, 2007. "MIDAS Regressions: Further Results and New Directions," Econometric Reviews, Taylor & Francis Journals, vol. 26(1), pages 53-90.
    2. Eric Ghysels & J. Isaac Miller, 2015. "Testing for Cointegration with Temporally Aggregated and Mixed-Frequency Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(6), pages 797-816, November.
    3. Hansen, Bruce E, 1996. "Inference When a Nuisance Parameter Is Not Identified under the Null Hypothesis," Econometrica, Econometric Society, vol. 64(2), pages 413-430, March.
    4. Messina, Jeffrey D. & Sinclair, Tara M. & Stekler, Herman, 2015. "What can we learn from revisions to the Greenbook forecasts?," Journal of Macroeconomics, Elsevier, vol. 45(C), pages 54-62.
    5. Holden, K & Peel, D A, 1990. "On Testing for Unbiasedness and Efficiency of Forecasts," The Manchester School of Economic & Social Studies, University of Manchester, vol. 58(2), pages 120-127, June.
    6. Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2006. "Predicting volatility: getting the most out of return data sampled at different frequencies," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 59-95.
    7. Hansen, Bruce E., 1999. "Threshold effects in non-dynamic panels: Estimation, testing, and inference," Journal of Econometrics, Elsevier, vol. 93(2), pages 345-368, December.
    8. Ghysels, Eric & Wright, Jonathan H., 2009. "Forecasting Professional Forecasters," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 504-516.
    9. Chen, Haiqiang, 2015. "Robust Estimation And Inference For Threshold Models With Integrated Regressors," Econometric Theory, Cambridge University Press, vol. 31(4), pages 778-810, August.
    10. Sinclair, Tara M. & Stekler, H.O., 2013. "Examining the quality of early GDP component estimates," International Journal of Forecasting, Elsevier, vol. 29(4), pages 736-750.
    11. J. Isaac Miller, 2014. "Mixed-frequency Cointegrating Regressions with Parsimonious Distributed Lag Structures," Journal of Financial Econometrics, Oxford University Press, vol. 12(3), pages 584-614.
    12. Lixiong Yang, 2017. "An assessment on the quality of China’s preliminary data of quarterly GDP announcements," Applied Economics, Taylor & Francis Journals, vol. 49(54), pages 5558-5569, November.
    13. Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2004. "The MIDAS Touch: Mixed Data Sampling Regression Models," University of California at Los Angeles, Anderson Graduate School of Management qt9mf223rs, Anderson Graduate School of Management, UCLA.
    14. Andreou, Elena & Ghysels, Eric & Kourtellos, Andros, 2010. "Regression models with mixed sampling frequencies," Journal of Econometrics, Elsevier, vol. 158(2), pages 246-261, October.
    15. Bruce E. Hansen, 2000. "Sample Splitting and Threshold Estimation," Econometrica, Econometric Society, vol. 68(3), pages 575-604, May.
    16. Pierre Guérin & Massimiliano Marcellino, 2013. "Markov-Switching MIDAS Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(1), pages 45-56, January.
    17. Bruce E. Hansen, 2017. "Regression Kink With an Unknown Threshold," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(2), pages 228-240, April.
    18. Xie, Zixiong & Hsu, Shih-Hsun, 2016. "Time varying biases and the state of the economy," International Journal of Forecasting, Elsevier, vol. 32(3), pages 716-725.
    19. Lixiong Yang, 2020. "State-dependent biases and the quality of China’s preliminary GDP announcements," Empirical Economics, Springer, vol. 59(6), pages 2663-2687, December.
    20. Ghysels, Eric & Qian, Hang, 2019. "Estimating MIDAS regressions via OLS with polynomial parameter profiling," Econometrics and Statistics, Elsevier, vol. 9(C), pages 1-16.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lixiong Yang, 2020. "State-dependent biases and the quality of China’s preliminary GDP announcements," Empirical Economics, Springer, vol. 59(6), pages 2663-2687, December.
    2. Deschamps, Bruno & Ioannidis, Christos & Ka, Kook, 2020. "High-frequency credit spread information and macroeconomic forecast revision," International Journal of Forecasting, Elsevier, vol. 36(2), pages 358-372.
    3. Götz, Thomas B. & Hecq, Alain & Smeekes, Stephan, 2016. "Testing for Granger causality in large mixed-frequency VARs," Journal of Econometrics, Elsevier, vol. 193(2), pages 418-432.
    4. Freitag L., 2014. "Default probabilities, CDS premiums and downgrades : A probit-MIDAS analysis," Research Memorandum 038, Maastricht University, Graduate School of Business and Economics (GSBE).
    5. Galvão, Ana Beatriz, 2013. "Changes in predictive ability with mixed frequency data," International Journal of Forecasting, Elsevier, vol. 29(3), pages 395-410.
    6. Claudia Foroni & Massimiliano Marcellino, 2013. "A survey of econometric methods for mixed-frequency data," Economics Working Papers ECO2013/02, European University Institute.
    7. Miller, J. Isaac, 2018. "Simple robust tests for the specification of high-frequency predictors of a low-frequency series," Econometrics and Statistics, Elsevier, vol. 5(C), pages 45-66.
    8. Rong Fu & Luze Xie & Tao Liu & Juan Huang & Binbin Zheng, 2022. "Chinese Economic Growth Projections Based on Mixed Data of Carbon Emissions under the COVID-19 Pandemic," Sustainability, MDPI, vol. 14(24), pages 1-16, December.
    9. Kuzin, Vladimir & Marcellino, Massimiliano & Schumacher, Christian, 2011. "MIDAS vs. mixed-frequency VAR: Nowcasting GDP in the euro area," International Journal of Forecasting, Elsevier, vol. 27(2), pages 529-542.
    10. Michelle T. Armesto & Kristie M. Engemann & Michael T. Owyang, 2010. "Forecasting with mixed frequencies," Review, Federal Reserve Bank of St. Louis, vol. 92(Nov), pages 521-536.
    11. J. Isaac Miller, 2016. "Conditionally Efficient Estimation of Long-Run Relationships Using Mixed-Frequency Time Series," Econometric Reviews, Taylor & Francis Journals, vol. 35(6), pages 1142-1171, June.
    12. Qian Chen & Xiang Gao & Shan Xie & Li Sun & Shuairu Tian & Shigeyuki Hamori, 2021. "On the Predictability of China Macro Indicator with Carbon Emissions Trading," Energies, MDPI, vol. 14(5), pages 1-24, February.
    13. Qiu, Yue, 2020. "Forecasting the Consumer Confidence Index with tree-based MIDAS regressions," Economic Modelling, Elsevier, vol. 91(C), pages 247-256.
    14. Selma Toker & Nimet Özbay & Kristofer Månsson, 2022. "Mixed data sampling regression: Parameter selection of smoothed least squares estimator," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(4), pages 718-751, July.
    15. Santiago Etchegaray Alvarez, 2022. "Proyecciones macroeconómicas con datos en frecuencias mixtas. Modelos ADL-MIDAS, U-MIDAS y TF-MIDAS con aplicaciones para Uruguay," Documentos de trabajo 2022004, Banco Central del Uruguay.
    16. Khalaf, Lynda & Kichian, Maral & Saunders, Charles J. & Voia, Marcel, 2021. "Dynamic panels with MIDAS covariates: Nonlinearity, estimation and fit," Journal of Econometrics, Elsevier, vol. 220(2), pages 589-605.
    17. J. Isaac Miller, 2014. "Mixed-frequency Cointegrating Regressions with Parsimonious Distributed Lag Structures," Journal of Financial Econometrics, Oxford University Press, vol. 12(3), pages 584-614.
    18. Degiannakis, Stavros & Filis, George, 2018. "Forecasting oil prices: High-frequency financial data are indeed useful," Energy Economics, Elsevier, vol. 76(C), pages 388-402.
    19. Kenichiro McAlinn, 2021. "Mixed‐frequency Bayesian predictive synthesis for economic nowcasting," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(5), pages 1143-1163, November.
    20. Warmedinger, Thomas & Paredes, Joan & Asimakopoulos, Stylianos, 2013. "Forecasting fiscal time series using mixed frequency data," Working Paper Series 1550, European Central Bank.

    More about this item

    Keywords

    Threshold effect; Mixed data sampling (MIDAS); Estimation; Testing; GDP data;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:empeco:v:62:y:2022:i:2:d:10.1007_s00181-021-02028-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.