Threshold mixed data sampling logit model with an application to forecasting US bank failures
Author
Abstract
Suggested Citation
DOI: 10.1007/s00181-024-02639-3
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- Eric Ghysels & Arthur Sinko & Rossen Valkanov, 2007. "MIDAS Regressions: Further Results and New Directions," Econometric Reviews, Taylor & Francis Journals, vol. 26(1), pages 53-90.
- Khalaf, Lynda & Kichian, Maral & Saunders, Charles J. & Voia, Marcel, 2021.
"Dynamic panels with MIDAS covariates: Nonlinearity, estimation and fit,"
Journal of Econometrics, Elsevier, vol. 220(2), pages 589-605.
- Lynda Khalaf & Maral Kichian & Charles Saunders & Marcel Voia, 2021. "Dynamic panels with MIDAS covariates: Nonlinearity, estimation and fit," Post-Print hal-03528880, HAL.
- Yu, Ping, 2012. "Likelihood estimation and inference in threshold regression," Journal of Econometrics, Elsevier, vol. 167(1), pages 274-294.
- Seo, Myung Hwan & Linton, Oliver, 2007.
"A smoothed least squares estimator for threshold regression models,"
Journal of Econometrics, Elsevier, vol. 141(2), pages 704-735, December.
- Linton, Oliver & Seo, Myunghwan, 2005. "A smoothed least squares estimator for threshold regression models," LSE Research Online Documents on Economics 4434, London School of Economics and Political Science, LSE Library.
- Eric Ghysels & J. Isaac Miller, 2015.
"Testing for Cointegration with Temporally Aggregated and Mixed-Frequency Time Series,"
Journal of Time Series Analysis, Wiley Blackwell, vol. 36(6), pages 797-816, November.
- Ghysels, Eric & Miller, J. Isaac, 2013. "Testing for Cointegration with Temporally Aggregated and Mixed-frequency Time Series," CEPR Discussion Papers 9654, C.E.P.R. Discussion Papers.
- Eric Ghysels & J. Isaac Miller, 2013. "Testing for Cointegration with Temporally Aggregated and Mixed-frequency Time Series," Working Papers 1307, Department of Economics, University of Missouri, revised 07 May 2014.
- Hansen, Bruce E, 1996.
"Inference When a Nuisance Parameter Is Not Identified under the Null Hypothesis,"
Econometrica, Econometric Society, vol. 64(2), pages 413-430, March.
- Hansen, B.E., 1991. "Inference when a Nuisance Parameter is Not Identified Under the Null Hypothesis," RCER Working Papers 296, University of Rochester - Center for Economic Research (RCER).
- Tom Doan, "undated". "TAR: RATS procedure to estimate a threshold autoregression, tests for threshold effect," Statistical Software Components RTS00209, Boston College Department of Economics.
- Tom Doan, "undated". "RATS programs to replicate Hansen's threshold estimation and testing results," Statistical Software Components RTZ00091, Boston College Department of Economics.
- Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2006.
"Predicting volatility: getting the most out of return data sampled at different frequencies,"
Journal of Econometrics, Elsevier, vol. 131(1-2), pages 59-95.
- Eric Ghysels & Pedro Santa-Clara & Rossen Valkanov, 2004. "Predicting Volatility: Getting the Most out of Return Data Sampled at Different Frequencies," NBER Working Papers 10914, National Bureau of Economic Research, Inc.
- Eric Ghysels & Pedro Santa-Clara & Rossen Valkanov, 2004. "Predicting Volatility: Getting the Most out of Return Data Sampled at Different Frequencies," CIRANO Working Papers 2004s-19, CIRANO.
- Zhehao Jia & Yukun Shi & Cheng Yan & Meryem Duygun, 2020. "Bankruptcy prediction with financial systemic risk," The European Journal of Finance, Taylor & Francis Journals, vol. 26(7-8), pages 666-690, May.
- Hansen, Bruce E., 1999.
"Threshold effects in non-dynamic panels: Estimation, testing, and inference,"
Journal of Econometrics, Elsevier, vol. 93(2), pages 345-368, December.
- Bruce E. Hansen, 1997. "Threshold effects in non-dynamic panels: Estimation, testing and inference," Boston College Working Papers in Economics 365, Boston College Department of Economics.
- Noelle I. Samia & Kung-Sik Chan, 2011. "Maximum likelihood estimation of a generalized threshold stochastic regression model," Biometrika, Biometrika Trust, vol. 98(2), pages 433-448.
- Lixiong Yang & Chunli Zhang & Chingnun Lee & I-Po Chen, 2021. "Panel kink threshold regression model with a covariate-dependent threshold," The Econometrics Journal, Royal Economic Society, vol. 24(3), pages 462-481.
- Ghysels, Eric & Wright, Jonathan H., 2009.
"Forecasting Professional Forecasters,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 504-516.
- Eric Ghysels & Jonathan H. Wright, 2006. "Forecasting professional forecasters," Finance and Economics Discussion Series 2006-10, Board of Governors of the Federal Reserve System (U.S.).
- Galvão, Ana Beatriz, 2013.
"Changes in predictive ability with mixed frequency data,"
International Journal of Forecasting, Elsevier, vol. 29(3), pages 395-410.
- Ana Beatriz Galvão, 2007. "Changes in Predictive Ability with Mixed Frequency Data," Working Papers 595, Queen Mary University of London, School of Economics and Finance.
- Giles, Judith A & Giles, David E A, 1993. "Pre-test Estimation and Testing in Econometrics: Recent Developments," Journal of Economic Surveys, Wiley Blackwell, vol. 7(2), pages 145-197, June.
- Rebel Cole & Lawrence White, 2012.
"Déjà Vu All Over Again: The Causes of U.S. Commercial Bank Failures This Time Around,"
Journal of Financial Services Research, Springer;Western Finance Association, vol. 42(1), pages 5-29, October.
- Rebel A. Cole & Lawrence J. White, 2010. "Deja Vu All Over Again: The Causes of U.S. Commercial Bank Failures This Time Around," Working Papers 10-15, New York University, Leonard N. Stern School of Business, Department of Economics.
- Cole, Rebel A. & White, Lawrence J., 2010. "Déjà vu all over again: The causes of U.S. commercial bank failures this time around," MPRA Paper 24690, University Library of Munich, Germany, revised 28 Jul 2010.
- J. Isaac Miller, 2014.
"Mixed-frequency Cointegrating Regressions with Parsimonious Distributed Lag Structures,"
Journal of Financial Econometrics, Oxford University Press, vol. 12(3), pages 584-614.
- J. Isaac Miller, 2012. "Mixed-frequency Cointegrating Regressions with Parsimonious Distributed Lag Structures," Working Papers 1211, Department of Economics, University of Missouri.
- Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2004.
"The MIDAS Touch: Mixed Data Sampling Regression Models,"
University of California at Los Angeles, Anderson Graduate School of Management
qt9mf223rs, Anderson Graduate School of Management, UCLA.
- Eric Ghysels & Pedro Santa-Clara & Rossen Valkanov, 2004. "The MIDAS Touch: Mixed Data Sampling Regression Models," CIRANO Working Papers 2004s-20, CIRANO.
- Lee, Yoonseok & Wang, Yulong, 2023.
"Threshold regression with nonparametric sample splitting,"
Journal of Econometrics, Elsevier, vol. 235(2), pages 816-842.
- Yoonseok Lee & Yulong Wang, 2019. "Threshold Regression with Nonparametric Sample Splitting," Papers 1905.13140, arXiv.org, revised Jan 2021.
- Bruce E. Hansen, 2000.
"Sample Splitting and Threshold Estimation,"
Econometrica, Econometric Society, vol. 68(3), pages 575-604, May.
- Bruce E. Hansen, 1996. "Sample Splitting and Threshold Estimation," Boston College Working Papers in Economics 319., Boston College Department of Economics, revised 12 May 1998.
- Claudia Foroni & Massimiliano Marcellino & Christian Schumacher, 2015. "Unrestricted mixed data sampling (MIDAS): MIDAS regressions with unrestricted lag polynomials," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(1), pages 57-82, January.
- Clark, Todd E. & West, Kenneth D., 2007.
"Approximately normal tests for equal predictive accuracy in nested models,"
Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
- Todd E. Clark & Kenneth D. West, 2005. "Approximately normal tests for equal predictive accuracy in nested models," Research Working Paper RWP 05-05, Federal Reserve Bank of Kansas City.
- Kenneth D. West & Todd Clark, 2006. "Approximately Normal Tests for Equal Predictive Accuracy in Nested Models," NBER Technical Working Papers 0326, National Bureau of Economic Research, Inc.
- Gupta, Jairaj & Chaudhry, Sajid, 2019. "Mind the tail, or risk to fail," Journal of Business Research, Elsevier, vol. 99(C), pages 167-185.
- Ping Yu & Xiaodong Fan, 2021. "Threshold Regression With a Threshold Boundary," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(4), pages 953-971, October.
- Carmen M. Reinhart & Kenneth S. Rogoff, 2011.
"From Financial Crash to Debt Crisis,"
American Economic Review, American Economic Association, vol. 101(5), pages 1676-1706, August.
- Carmen M. Reinhart & Kenneth S. Rogoff, 2010. "From Financial Crash to Debt Crisis," NBER Working Papers 15795, National Bureau of Economic Research, Inc.
- Guggenberger, Patrik, 2010. "The impact of a Hausman pretest on the size of a hypothesis test: The panel data case," Journal of Econometrics, Elsevier, vol. 156(2), pages 337-343, June.
- Audrino, Francesco & Kostrov, Alexander & Ortega, Juan-Pablo, 2019. "Predicting U.S. Bank Failures with MIDAS Logit Models," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 54(6), pages 2575-2603, December.
- Shumway, Tyler, 2001. "Forecasting Bankruptcy More Accurately: A Simple Hazard Model," The Journal of Business, University of Chicago Press, vol. 74(1), pages 101-124, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Lixiong Yang, 2022. "Threshold mixed data sampling (TMIDAS) regression models with an application to GDP forecast errors," Empirical Economics, Springer, vol. 62(2), pages 533-551, February.
- Götz, Thomas B. & Hecq, Alain & Smeekes, Stephan, 2016.
"Testing for Granger causality in large mixed-frequency VARs,"
Journal of Econometrics, Elsevier, vol. 193(2), pages 418-432.
- Götz, T.B. & Hecq, A.W., 2014. "Testing for Granger causality in large mixed-frequency VARs," Research Memorandum 028, Maastricht University, Graduate School of Business and Economics (GSBE).
- Götz, Thomas B. & Hecq, Alain & Smeekes, Stephan, 2015. "Testing for Granger causality in large mixed-frequency VARs," Discussion Papers 45/2015, Deutsche Bundesbank.
- Götz, T.B. & Hecq, A.W. & Smeekes, S., 2015. "Testing for Granger Causality in Large Mixed-Frequency VARs," Research Memorandum 036, Maastricht University, Graduate School of Business and Economics (GSBE).
- Galvão, Ana Beatriz, 2013.
"Changes in predictive ability with mixed frequency data,"
International Journal of Forecasting, Elsevier, vol. 29(3), pages 395-410.
- Ana Beatriz Galvão, 2007. "Changes in Predictive Ability with Mixed Frequency Data," Working Papers 595, Queen Mary University of London, School of Economics and Finance.
- Degiannakis, Stavros & Filis, George, 2018. "Forecasting oil prices: High-frequency financial data are indeed useful," Energy Economics, Elsevier, vol. 76(C), pages 388-402.
- Deschamps, Bruno & Ioannidis, Christos & Ka, Kook, 2020. "High-frequency credit spread information and macroeconomic forecast revision," International Journal of Forecasting, Elsevier, vol. 36(2), pages 358-372.
- Li, Dong & Tong, Howell, 2016. "Nested sub-sample search algorithm for estimation of threshold models," LSE Research Online Documents on Economics 68880, London School of Economics and Political Science, LSE Library.
- Thomas B. Götz & Alain W. Hecq, 2019.
"Granger Causality Testing in Mixed‐Frequency VARs with Possibly (Co)Integrated Processes,"
Journal of Time Series Analysis, Wiley Blackwell, vol. 40(6), pages 914-935, November.
- Hecq, Alain & Goetz, Thomas, 2018. "Granger causality testing in mixed-frequency Vars with possibly (co)integrated processes," MPRA Paper 87746, University Library of Munich, Germany.
- Rong Fu & Luze Xie & Tao Liu & Juan Huang & Binbin Zheng, 2022. "Chinese Economic Growth Projections Based on Mixed Data of Carbon Emissions under the COVID-19 Pandemic," Sustainability, MDPI, vol. 14(24), pages 1-16, December.
- Mahmut Gunay, 2020. "Nowcasting Turkish GDP with MIDAS: Role of Functional Form of the Lag Polynomial," Working Papers 2002, Research and Monetary Policy Department, Central Bank of the Republic of Turkey.
- Michelle T. Armesto & Kristie M. Engemann & Michael T. Owyang, 2010. "Forecasting with mixed frequencies," Review, Federal Reserve Bank of St. Louis, vol. 92(Nov), pages 521-536.
- Cláudia Duarte, 2015. "Covariate-augmented unit root tests with mixed-frequency data," Working Papers w201507, Banco de Portugal, Economics and Research Department.
- Qian Chen & Xiang Gao & Shan Xie & Li Sun & Shuairu Tian & Shigeyuki Hamori, 2021. "On the Predictability of China Macro Indicator with Carbon Emissions Trading," Energies, MDPI, vol. 14(5), pages 1-24, February.
- Wei Miao & Jad Beyhum & Jonas Striaukas & Ingrid Van Keilegom, 2025. "High-dimensional censored MIDAS logistic regression for corporate survival forecasting," Papers 2502.09740, arXiv.org.
- Qiu, Yue, 2020. "Forecasting the Consumer Confidence Index with tree-based MIDAS regressions," Economic Modelling, Elsevier, vol. 91(C), pages 247-256.
- Marie Bessec, 2019.
"Revisiting the transitional dynamics of business cycle phases with mixed-frequency data,"
Econometric Reviews, Taylor & Francis Journals, vol. 38(7), pages 711-732, August.
- Marie Bessec, 2016. "Revisiting the transitional dynamics of business-cycle phases with mixed frequency data," Working Papers hal-01358595, HAL.
- Marie Bessec, 2019. "Revisiting the transitional dynamics of business-cycle phases with mixed-frequency data," Post-Print hal-02181552, HAL.
- Claudia Foroni & Massimiliano Marcellino, 2013.
"A survey of econometric methods for mixed-frequency data,"
Economics Working Papers
ECO2013/02, European University Institute.
- Claudia Foroni & Massimiliano Marcellino, 2013. "A survey of econometric methods for mixed-frequency data," Working Paper 2013/06, Norges Bank.
- Santiago Etchegaray Alvarez, 2022. "Proyecciones macroeconómicas con datos en frecuencias mixtas. Modelos ADL-MIDAS, U-MIDAS y TF-MIDAS con aplicaciones para Uruguay," Documentos de trabajo 2022004, Banco Central del Uruguay.
- Goldmann, Leonie & Crook, Jonathan & Calabrese, Raffaella, 2024. "A new ordinal mixed-data sampling model with an application to corporate credit rating levels," European Journal of Operational Research, Elsevier, vol. 314(3), pages 1111-1126.
- Kenichiro McAlinn, 2021. "Mixed‐frequency Bayesian predictive synthesis for economic nowcasting," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(5), pages 1143-1163, November.
- Warmedinger, Thomas & Paredes, Joan & Asimakopoulos, Stylianos, 2013. "Forecasting fiscal time series using mixed frequency data," Working Paper Series 1550, European Central Bank.
More about this item
Keywords
; ; ; ; ; ;JEL classification:
- C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
- C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
- C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
- C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:empeco:v:68:y:2025:i:1:d:10.1007_s00181-024-02639-3. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.