IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

A smoothed least squares estimator for threshold regression models

  • Oliver Linton
  • Myunghwan Seo

We propose a smoothed least squares estimator of the parameters of a threshold regression model. Our model generalizes that considered in Hansen (2000) to allow the thresholding to depend on a linear index of observed regressors, thus allowing discrete variables to enter. We also do not assume that the threshold e¤ect is vanishingly small. Our estimator is shown to be consistent and asymptotically normal thus facilitating standard inference techniques based on estimated standard errors or standard bootstrap for the threshold parameters themselves. We compare our con dence intervals with those of Hansen (2000) in a simulation study and show that our methods outperform his for large values of the threshold. We also include an application to cross-country growth regressions.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://eprints.lse.ac.uk/4434/
File Function: Open access version.
Download Restriction: no

Paper provided by London School of Economics and Political Science, LSE Library in its series LSE Research Online Documents on Economics with number 4434.

as
in new window

Length: 50 pages
Date of creation: Oct 2005
Date of revision:
Handle: RePEc:ehl:lserod:4434
Contact details of provider: Postal: LSE Library Portugal Street London, WC2A 2HD, U.K.
Phone: +44 (020) 7405 7686
Web page: http://www.lse.ac.uk/

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Andrews, Donald W K, 1987. "Consistency in Nonlinear Econometric Models: A Generic Uniform Law of Large Numbers [On Unification of the Asymptotic Theory of Nonlinear Econometric Models]," Econometrica, Econometric Society, vol. 55(6), pages 1465-71, November.
  2. Manski, Charles F., 1975. "Maximum score estimation of the stochastic utility model of choice," Journal of Econometrics, Elsevier, vol. 3(3), pages 205-228, August.
  3. Joel L. Horowitz, 1998. "Bootstrap Methods for Median Regression Models," Econometrica, Econometric Society, vol. 66(6), pages 1327-1352, November.
  4. Jansson, Michael, 2002. "Consistent Covariance Matrix Estimation For Linear Processes," Econometric Theory, Cambridge University Press, vol. 18(06), pages 1449-1459, December.
  5. de Jong, R.M., 1995. "Laws of Large Numbers for Dependent Heterogeneous Processes," Econometric Theory, Cambridge University Press, vol. 11(02), pages 347-358, February.
  6. de Jong, Robert M. & Woutersen, Tiemen, 2011. "Dynamic Time Series Binary Choice," Econometric Theory, Cambridge University Press, vol. 27(04), pages 673-702, August.
  7. de Jong, Robert M., 1997. "Central Limit Theorems for Dependent Heterogeneous Random Variables," Econometric Theory, Cambridge University Press, vol. 13(03), pages 353-367, June.
  8. Horowitz, Joel L, 1992. "A Smoothed Maximum Score Estimator for the Binary Response Model," Econometrica, Econometric Society, vol. 60(3), pages 505-31, May.
  9. Jean-Marie Dufour, 1997. "Some Impossibility Theorems in Econometrics with Applications to Structural and Dynamic Models," Econometrica, Econometric Society, vol. 65(6), pages 1365-1388, November.
  10. Jesús Gonzalo & Michael Wolf, 2001. "Subsampling inference in threshold autoregressive models," Economics Working Papers 573, Department of Economics and Business, Universitat Pompeu Fabra.
  11. Hansen, Bruce E, 1996. "Inference When a Nuisance Parameter Is Not Identified under the Null Hypothesis," Econometrica, Econometric Society, vol. 64(2), pages 413-30, March.
  12. Bruce E. Hansen, 1996. "Sample Splitting and Threshold Estimation," Boston College Working Papers in Economics 319., Boston College Department of Economics, revised 12 May 1998.
  13. Potter, Simon M, 1995. "A Nonlinear Approach to US GNP," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 10(2), pages 109-25, April-Jun.
  14. Pakes, Ariel & Pollard, David, 1989. "Simulation and the Asymptotics of Optimization Estimators," Econometrica, Econometric Society, vol. 57(5), pages 1027-57, September.
  15. Caner, Mehmet, 2002. "A Note On Least Absolute Deviation Estimation Of A Threshold Model," Econometric Theory, Cambridge University Press, vol. 18(03), pages 800-814, June.
  16. Delgado, Miguel A. & Hidalgo, Javier, 2000. "Nonparametric inference on structural breaks," Journal of Econometrics, Elsevier, vol. 96(1), pages 113-144, May.
  17. Jason Abrevaya & Jian Huang, 2005. "On the Bootstrap of the Maximum Score Estimator," Econometrica, Econometric Society, vol. 73(4), pages 1175-1204, 07.
  18. Horowitz, Joel L., 2002. "Bootstrap critical values for tests based on the smoothed maximum score estimator," Journal of Econometrics, Elsevier, vol. 111(2), pages 141-167, December.
  19. Donald W.K. Andrews, 1988. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Cowles Foundation Discussion Papers 877R, Cowles Foundation for Research in Economics, Yale University, revised Jul 1989.
  20. Hahn, Jinyong & Todd, Petra & Van der Klaauw, Wilbert, 2001. "Identification and Estimation of Treatment Effects with a Regression-Discontinuity Design," Econometrica, Econometric Society, vol. 69(1), pages 201-09, January.
  21. Chang-Jin Kim & Charles R. Nelson, 1999. "State-Space Models with Regime Switching: Classical and Gibbs-Sampling Approaches with Applications," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262112388, June.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:4434. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (LSERO Manager)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.