IDEAS home Printed from https://ideas.repec.org/p/jhu/papers/538.html
   My bibliography  Save this paper

Dynamic time series binary choice

Author

Listed:
  • Robert M. de Jong
  • Tiemen Woutersen

Abstract

This paper considers dynamic time series binary choice models. It proves near epoch dependence and strong mixing for the dynamic binary choice model with correlated errors. Using this result, it shows in a time series setting the validity of the dynamic probit likelihood procedure when lags of the dependent binary variable are used as regressors, and it establishes the asymptotic validity of Horowitz?smoothed maximum score estimation of dynamic binary choice models with lags of the dependent variable as regressors. For the semiparametric model, the latent error is explicitly allowed to be correlated. It turns out that no long-run variance estimator is needed for the validity of the smoothed maximum score procedure in the dynamic time series framework.

Suggested Citation

  • Robert M. de Jong & Tiemen Woutersen, 2007. "Dynamic time series binary choice," Economics Working Paper Archive 538, The Johns Hopkins University,Department of Economics.
  • Handle: RePEc:jhu:papers:538
    as

    Download full text from publisher

    File URL: http://econ.jhu.edu/wp-content/uploads/pdf/papers/WP538.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Matzkin, Rosa L, 1992. "Nonparametric and Distribution-Free Estimation of the Binary Threshold Crossing and the Binary Choice Models," Econometrica, Econometric Society, vol. 60(2), pages 239-270, March.
    2. Imbens, Guido W, 1992. "An Efficient Method of Moments Estimator for Discrete Choice Models with Choice-Based Sampling," Econometrica, Econometric Society, vol. 60(5), pages 1187-1214, September.
    3. Manski, Charles F., 1985. "Semiparametric analysis of discrete response : Asymptotic properties of the maximum score estimator," Journal of Econometrics, Elsevier, vol. 27(3), pages 313-333, March.
    4. Dale J. Poirier & Paul A. Ruud, 1988. "Probit with Dependent Observations," Review of Economic Studies, Oxford University Press, vol. 55(4), pages 593-614.
    5. repec:cup:etheor:v:13:y:1997:i:3:p:353-67 is not listed on IDEAS
    6. Newey, Whitney K. & McFadden, Daniel, 1986. "Large sample estimation and hypothesis testing," Handbook of Econometrics,in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 36, pages 2111-2245 Elsevier.
    7. Donald W.K. Andrews, 1986. "Consistency in Nonlinear Econometric Models: A Generic Uniform Law of Large Numbers," Cowles Foundation Discussion Papers 790, Cowles Foundation for Research in Economics, Yale University.
    8. Horowitz, Joel L, 1992. "A Smoothed Maximum Score Estimator for the Binary Response Model," Econometrica, Econometric Society, vol. 60(3), pages 505-531, May.
    9. de Jong, Robert M., 1997. "Central Limit Theorems for Dependent Heterogeneous Random Variables," Econometric Theory, Cambridge University Press, vol. 13(03), pages 353-367, June.
    10. Andrews, Donald W.K., 1988. "Laws of Large Numbers for Dependent Non-Identically Distributed Random Variables," Econometric Theory, Cambridge University Press, vol. 4(03), pages 458-467, December.
    11. Cosslett, Stephen R, 1983. "Distribution-Free Maximum Likelihood Estimator of the Binary Choice Model," Econometrica, Econometric Society, vol. 51(3), pages 765-782, May.
    12. Eichengreen, Barry & Watson, Mark W & Grossman, Richard S, 1985. "Bank Rate Policy under the Interwar Gold Standard: A Dynamic Probit Model," Economic Journal, Royal Economic Society, vol. 95(379), pages 725-745, September.
    Full references (including those not matched with items on IDEAS)

    More about this item

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C25 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions; Probabilities

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jhu:papers:538. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (None). General contact details of provider: http://edirc.repec.org/data/dejhuus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.