IDEAS home Printed from https://ideas.repec.org/a/fan/restre/vhtml10.3280-rest2013-003002.html
   My bibliography  Save this article

Dipendenza spaziale contemporanea e non contemporanea nei tassi di disoccupazione: un tentativo di analisi empirica dei dati provinciali italiani

Author

Listed:
  • Massimiliano Agovino
  • Antonio Garofalo

Abstract

L’obiettivo del presente lavoro è quello di analizzare il trend spazio-temporale dei tassi di disoccupazione delle province italiane attraverso l’uso di strumenti dell’econometria spaziale. A tale scopo, avvalendoci di tecniche ESDA (Exploratory Spatial Data Analysis) e ESTDA (Exploratory Space-Time Data Analysis) si indagherà la presenza di dipendenza spaziale contemporanea e non contemporanea nei tassi di disoccupazione. Dai risultati si evince che: la disoccupazione è un fenomeno caratterizzato da persistenza spazio-temporale; uno shock nel tasso di disoccupazione che si manifesta nel passato in una data provincia continua a produrre i propri effetti nel presente nelle province a essa limitrofe. Di conseguenza, interventi di policy indirizzati alla provincia dove lo shock si è generato non sono sufficienti ad arginare il problema prescindendo dal carattere non circoscritto né temporaneo della disoccupazione.

Suggested Citation

  • Massimiliano Agovino & Antonio Garofalo, 2013. "Dipendenza spaziale contemporanea e non contemporanea nei tassi di disoccupazione: un tentativo di analisi empirica dei dati provinciali italiani," RIVISTA DI ECONOMIA E STATISTICA DEL TERRITORIO, FrancoAngeli Editore, vol. 2013(3), pages 45-82.
  • Handle: RePEc:fan:restre:v:html10.3280/rest2013-003002
    as

    Download full text from publisher

    File URL: http://www.francoangeli.it/riviste/Scheda_Rivista.aspx?IDArticolo=50332&Tipo=ArticoloPDF
    Download Restriction: Single articles can be downloaded buying download credits, for info: http://www.francoangeli.it/riviste/inglese_download_credit.asp

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Pace, R. Kelley & Barry, Ronald & Gilley, Otis W. & Sirmans, C. F., 2000. "A method for spatial-temporal forecasting with an application to real estate prices," International Journal of Forecasting, Elsevier, vol. 16(2), pages 229-246.
    2. Valter Di Giacinto, 2006. "A Generalized Space-Time ARMA Model with an Application to Regional Unemployment Analysis in Italy," International Regional Science Review, , vol. 29(2), pages 159-198, April.
    3. Maria Francesca Cracolici & Miranda Cuffaro & Peter Nijkamp, 2007. "Geographical Distribution of Unemployment: An Analysis of Provincial Differences in Italy," Growth and Change, Wiley Blackwell, vol. 38(4), pages 649-670, December.
    4. Florax, Raymond & Folmer, Henk, 1992. "Specification and estimation of spatial linear regression models : Monte Carlo evaluation of pre-test estimators," Regional Science and Urban Economics, Elsevier, vol. 22(3), pages 405-432, September.
    5. Case, Anne C, 1991. "Spatial Patterns in Household Demand," Econometrica, Econometric Society, vol. 59(4), pages 953-965, July.
    6. Giuseppe Arbia & Roberto Basile & Mirella Salvatore, 2002. "Regional Convergence in Italy 1951-199: A Spatial Econometric Perspective," ISAE Working Papers 29, ISTAT - Italian National Institute of Statistics - (Rome, ITALY).
    7. Luc Anselin, 2001. "Spatial Effects in Econometric Practice in Environmental and Resource Economics," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 83(3), pages 705-710.
    8. Baltagi, Badi H. & Song, Seuck Heun & Koh, Won, 2003. "Testing panel data regression models with spatial error correlation," Journal of Econometrics, Elsevier, vol. 117(1), pages 123-150, November.
    9. Fernando A. López Hernández & Coro Chasco Yrigoyen, 2004. "Space-Time Lags: Specification Strategy In Spatial Regression Models," Econometrics 0411005, University Library of Munich, Germany.
    10. J. Paul Elhorst, 2003. "Specification and Estimation of Spatial Panel Data Models," International Regional Science Review, , vol. 26(3), pages 244-268, July.
    11. Giacomini, Raffaella & Granger, Clive W. J., 2004. "Aggregation of space-time processes," Journal of Econometrics, Elsevier, vol. 118(1-2), pages 7-26.
    12. López, Fernando & Chasco, Coro, 2007. "Time-trend in spatial dependence: Specification strategy in the first-order spatial autoregressive model," MPRA Paper 1985, University Library of Munich, Germany.
    13. Pace, R Kelley & Barry, Ronald & Clapp, John M. & Rodriquez, Mauricio, 1998. "Spatiotemporal Autoregressive Models of Neighborhood Effects," The Journal of Real Estate Finance and Economics, Springer, vol. 17(1), pages 15-33, July.
    14. Chasco, Coro & López, Fernando, 2006. "Is spatial dependence an instantaneous effect? Some evidence in economic series of Spanish provinces," MPRA Paper 1777, University Library of Munich, Germany.
    15. Serdar Yilmaz & Kingley E. Haynes & Mustafa Dinc, 2002. "Geographic and Network Neighbors: Spillover Effects of Telecommunications Infrastructure," Journal of Regional Science, Wiley Blackwell, vol. 42(2), pages 339-360, May.
    16. Sergio Rey & Brett Montouri, 1999. "US Regional Income Convergence: A Spatial Econometric Perspective," Regional Studies, Taylor & Francis Journals, vol. 33(2), pages 143-156.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Modelli spaziali; econometria spaziale; correlazione spaziale; ESDA; disoccupazione;

    JEL classification:

    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • J08 - Labor and Demographic Economics - - General - - - Labor Economics Policies
    • J64 - Labor and Demographic Economics - - Mobility, Unemployment, Vacancies, and Immigrant Workers - - - Unemployment: Models, Duration, Incidence, and Job Search

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fan:restre:v:html10.3280/rest2013-003002. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Angelo Ventriglia). General contact details of provider: http://www.francoangeli.it/riviste/sommario.asp?IDRivista=142 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.