IDEAS home Printed from
   My bibliography  Save this article

Testing for Spatial Effects in Seemingly Unrelated Regressions


  • Jesús Mur
  • Fernando López
  • Marcos Herrera


Abstract The paper focuses on the case of a panel data set, without unobserved individual effects, treated by means of an SUR specification. The problem raised is to test for the presence of spatial effects in these multivariate systems. Various useful tests are developed based on the principle of the Lagrange Multiplier in a maximum-likelihood framework. Also, we address the question of the time stability of the sequence of spatial dependence coefficients, as a maintained hypothesis that is not necessarily true in applied work. The second part of the paper presents the results of a Monte Carlo experiment. Essais sur les effets spatiaux dans des régressions apparemment sans rapport Resume Cette communication se concentre sur le cas de l'ensemble de données de panel, sans effets individuels non observés, traitées au moyen d'une spécification SUR. Le problème soulevé concerne l'examen de la présence d'effets spatiaux dans ces systèmes à multi-variables. On développe plusieurs essais utiles, basés sur le principe du multiplicateur d'Euler-Lagrange dans un cadre de probabilité maximale. En outre, nous nous penchons sur la question de la stabilité en fonction du temps des coefficients de dépendance spatiale, en tant qu'hypothèse maintenue qui n'est pas nécessairement vraie dans les applications pratiques. La deuxième partie de la communication présente les résultats d'une expérience Monte Carlo. Ensayando los efectos espaciales en ecuaciones aparentemente no relacionadas Extracto El trabajo se centra en el caso de un conjunto de datos de panel, donde no existen efectos individuales inobservados, tratado por medio de una especificación SUR. El problema que se plantea es contrastar la existencia de efectos espaciales en ese tipo de sistemas multivariados. Se desarrollan varios contrastes basados en el principio del Multiplicador de Lagrange en un contexto de máxima verosimilitud. Igualmente tratamos la cuestioen de la estabilidad temporal en la secuencia de coeficientes de dependencia espacial, como una hipótesis mantenida que no es necesariamente cierta en trabajos de tipo aplicados. La parte final del arti′culo presenta los resultados de un experimento de Monte Carlo.

Suggested Citation

  • Jesús Mur & Fernando López & Marcos Herrera, 2010. "Testing for Spatial Effects in Seemingly Unrelated Regressions," Spatial Economic Analysis, Taylor & Francis Journals, vol. 5(4), pages 399-440.
  • Handle: RePEc:taf:specan:v:5:y:2010:i:4:p:399-440 DOI: 10.1080/17421772.2010.516443

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Andrés Rodríguez-Pose, 2013. "Do Institutions Matter for Regional Development?," Regional Studies, Taylor & Francis Journals, pages 1034-1047.
    2. Joseph Byrne & Giorgio Fazio & Davide Piacentino, 2009. "Total Factor Productivity Convergence among Italian Regions: Some Evidence from Panel Unit Root Tests," Regional Studies, Taylor & Francis Journals, vol. 43(1), pages 63-76.
    3. Rodriguez-Pose, Andres, 1998. "Dynamics of Regional Growth in Europe: Social and Political Factors," OUP Catalogue, Oxford University Press, number 9780198233831.
    4. Mundlak, Yair, 1978. "On the Pooling of Time Series and Cross Section Data," Econometrica, Econometric Society, vol. 46(1), pages 69-85, January.
    5. Luigi Guiso & Fabiano Schivardi, 2007. "Spillovers in Industrial Districts," Economic Journal, Royal Economic Society, vol. 117(516), pages 68-93, January.
    6. Bontempi, Maria Elena & Golinelli, Roberto & Parigi, Giuseppe, 2010. "Why demand uncertainty curbs investment: Evidence from a panel of Italian manufacturing firms," Journal of Macroeconomics, Elsevier, pages 218-238.
    7. I.P. Ottaviano, Gianmarco, 2008. "Infrastructure and economic geography: An overview of theory and evidence," EIB Papers 6/2008, European Investment Bank, Economics Department.
    8. Bontempi, Maria Elena & Golinelli, Roberto & Parigi, Giuseppe, 2010. "Why demand uncertainty curbs investment: Evidence from a panel of Italian manufacturing firms," Journal of Macroeconomics, Elsevier, pages 218-238.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Lauridsen, Jørgen T. & Zeren, Fatma & Ari, Ay?E, 2015. "Is Crime in Turkey Economically Rational?/¿Es económicamente racional el crimen en Turquía?," Estudios de Economía Aplicada, Estudios de Economía Aplicada, vol. 33, pages 37-52, Enero.
    2. Laurent Van Malderen & Bart Jourquin & Isabelle Thomas, 2012. "Employers Transport Plans: Do They Change The Commuting Behaviour Of Workers?," ERSA conference papers ersa12p1048, European Regional Science Association.
    3. Paola Bertolini & Michele Lalla & Francesco Pagliacci, 2015. "School enrolment of first- and second-generation immigrant students in Italy: A geographical analysis," Papers in Regional Science, Wiley Blackwell, vol. 94(1), pages 141-159, March.
    4. López Hernández, Fernando A. & Martínez Ortiz, Pedro José & Cegarra Navarro, Juan Gabriel, 2015. "Interacción espacial en el gasto en servicios públicos de las entidades locales. Un enfoque panel mediante modelos SUR /Spatial Interaction in Spending on Public Services by Local Governments. A Panel," Estudios de Economía Aplicada, Estudios de Economía Aplicada, vol. 33, pages 81-100, Enero.
    5. Fernando López & Jesús Mur & Ana Angulo, 2014. "Spatial model selection strategies in a SUR framework. The case of regional productivity in EU," The Annals of Regional Science, Springer;Western Regional Science Association, pages 197-220.
    6. Mate-Sanchez, Mariluz & López Hernández, Fernando A. & Lacambra, Jesus Mur, 2012. "Analyzing long-term average adjustment of financial ratios with spatial interactions," Economic Modelling, Elsevier, vol. 29(4), pages 1370-1376.

    More about this item


    Spatial dependence; seemingly unrelated regressions; Monte Carlo; C21; C50; R15;

    JEL classification:

    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C50 - Mathematical and Quantitative Methods - - Econometric Modeling - - - General
    • R15 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General Regional Economics - - - Econometric and Input-Output Models; Other Methods


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:specan:v:5:y:2010:i:4:p:399-440. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.