IDEAS home Printed from https://ideas.repec.org/p/cam/camdae/1003.html
   My bibliography  Save this paper

Understanding Interactions in Social Networks and Committees

Author

Listed:
  • Bhattacharjee, A.
  • Holly, S.

Abstract

While much of the literature on cross section dependence has focused mainly on estimation of the regression coefficients in the underlying model, estimation and inferences on the magnitude and strength of spill-overs and interactions has been largely ignored. At the same time, such inferences are important in many applications, not least because they have structural interpretations and provide useful interpretation and structural explanation for the strength of any interactions. In this paper we propose GMM methods designed to uncover underlying (hidden) interactions in social networks and committees. Special attention is paid to the interval censored regression model. Our methods are applied to a study of committee decision making within the Bank of England’s monetary policy committee.

Suggested Citation

  • Bhattacharjee, A. & Holly, S., 2010. "Understanding Interactions in Social Networks and Committees," Cambridge Working Papers in Economics 1003, Faculty of Economics, University of Cambridge.
  • Handle: RePEc:cam:camdae:1003
    as

    Download full text from publisher

    File URL: http://www.econ.cam.ac.uk/research-files/repec/cam/pdf/cwpe1003.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Kelejian, Harry H & Prucha, Ingmar R, 1999. "A Generalized Moments Estimator for the Autoregressive Parameter in a Spatial Model," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 40(2), pages 509-533, May.
    2. Anne Sibert, 2003. "Monetary Policy Committees: Individual and Collective Reputations," Review of Economic Studies, Oxford University Press, vol. 70(3), pages 649-665.
    3. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    4. M. Hashem Pesaran, 2006. "Estimation and Inference in Large Heterogeneous Panels with a Multifactor Error Structure," Econometrica, Econometric Society, vol. 74(4), pages 967-1012, July.
    5. Thierry Magnac & Eric Maurin, 2008. "Partial Identification in Monotone Binary Models: Discrete Regressors and Interval Data," Review of Economic Studies, Oxford University Press, vol. 75(3), pages 835-864.
    6. Gerling, Kerstin & Gruner, Hans Peter & Kiel, Alexandra & Schulte, Elisabeth, 2005. "Information acquisition and decision making in committees: A survey," European Journal of Political Economy, Elsevier, vol. 21(3), pages 563-597, September.
    7. Austen-Smith, David & Banks, Jeffrey S., 1996. "Information Aggregation, Rationality, and the Condorcet Jury Theorem," American Political Science Review, Cambridge University Press, vol. 90(1), pages 34-45, March.
    8. Matsen, Egil & Roisland, Oistein, 2005. "Interest rate decisions in an asymmetric monetary union," European Journal of Political Economy, Elsevier, vol. 21(2), pages 365-384, June.
    9. Gruner, Hans Peter & Kiel, Alexandra, 2004. "Collective decisions with interdependent valuations," European Economic Review, Elsevier, vol. 48(5), pages 1147-1168, October.
    10. Case, Anne C, 1991. "Spatial Patterns in Household Demand," Econometrica, Econometric Society, vol. 59(4), pages 953-965, July.
    11. Holly, Sean & Pesaran, M. Hashem & Yamagata, Takashi, 2010. "A spatio-temporal model of house prices in the USA," Journal of Econometrics, Elsevier, vol. 158(1), pages 160-173, September.
    12. Han Hong & Elie Tamer, 2003. "Inference in Censored Models with Endogenous Regressors," Econometrica, Econometric Society, vol. 71(3), pages 905-932, May.
    13. Joris Pinkse & Margaret E. Slade & Craig Brett, 2002. "Spatial Price Competition: A Semiparametric Approach," Econometrica, Econometric Society, vol. 70(3), pages 1111-1153, May.
    14. Bhattacharjee, Arnab & Jensen-Butler, Chris, 2013. "Estimation of the spatial weights matrix under structural constraints," Regional Science and Urban Economics, Elsevier, vol. 43(4), pages 617-634.
    15. Mike Felgenhauer & Hans Peter Grüner, 2008. "Committees and Special Interests," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 10(2), pages 219-243, April.
    16. Robertson, Donald & Symons, James, 2000. "Factor residuals in SUR regressions: estimating panels allowing for cross sectional correlation," LSE Research Online Documents on Economics 20163, London School of Economics and Political Science, LSE Library.
    17. Richard W. Blundell & James L. Powell, 2004. "Endogeneity in Semiparametric Binary Response Models," Review of Economic Studies, Oxford University Press, vol. 71(3), pages 655-679.
    18. Sanjeev Goyal, 2007. "Introduction to Connections: An Introduction to the Economics of Networks," Introductory Chapters, in: Connections: An Introduction to the Economics of Networks, Princeton University Press.
    19. Timothy G. Conley & Giorgio Topa, 2003. "Identification of local interaction models with imperfect location data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(5), pages 605-618.
    20. Aoki, Kosuke, 2003. "On the optimal monetary policy response to noisy indicators," Journal of Monetary Economics, Elsevier, vol. 50(3), pages 501-523, April.
    21. Pesaran M.H. & Schuermann T. & Weiner S.M., 2004. "Modeling Regional Interdependencies Using a Global Error-Correcting Macroeconometric Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 129-162, April.
    22. Bond, Stephen & Bowsher, Clive & Windmeijer, Frank, 2001. "Criterion-based inference for GMM in autoregressive panel data models," Economics Letters, Elsevier, vol. 73(3), pages 379-388, December.
    23. Conley, Timothy G. & Molinari, Francesca, 2007. "Spatial correlation robust inference with errors in location or distance," Journal of Econometrics, Elsevier, vol. 140(1), pages 76-96, September.
    24. Kelejian, Harry H. & Prucha, Ingmar R., 2007. "HAC estimation in a spatial framework," Journal of Econometrics, Elsevier, vol. 140(1), pages 131-154, September.
    25. Kleibergen, Frank, 2007. "Generalizing weak instrument robust IV statistics towards multiple parameters, unrestricted covariance matrices and identification statistics," Journal of Econometrics, Elsevier, vol. 139(1), pages 181-216, July.
    26. Amemiya, Takeshi, 1973. "Regression Analysis when the Dependent Variable is Truncated Normal," Econometrica, Econometric Society, vol. 41(6), pages 997-1016, November.
    27. Newey, Whitney K., 1984. "A method of moments interpretation of sequential estimators," Economics Letters, Elsevier, vol. 14(2-3), pages 201-206.
    28. Blundell, Richard & Bond, Stephen, 1998. "Initial conditions and moment restrictions in dynamic panel data models," Journal of Econometrics, Elsevier, vol. 87(1), pages 115-143, August.
    29. Pesaran, M. Hashem & Tosetti, Elisa, 2011. "Large panels with common factors and spatial correlation," Journal of Econometrics, Elsevier, vol. 161(2), pages 182-202, April.
    30. Smith, Richard J & Blundell, Richard W, 1986. "An Exogeneity Test for a Simultaneous Equation Tobit Model with an Application to Labor Supply," Econometrica, Econometric Society, vol. 54(3), pages 679-685, May.
    31. Orphanides, Athanasios, 2003. "Monetary policy evaluation with noisy information," Journal of Monetary Economics, Elsevier, vol. 50(3), pages 605-631, April.
    32. Sibert, Anne, 2002. "Monetary policy with uncertain central bank preferences," European Economic Review, Elsevier, vol. 46(6), pages 1093-1109, June.
    33. Lewbel, Arthur, 2000. "Semiparametric qualitative response model estimation with unknown heteroscedasticity or instrumental variables," Journal of Econometrics, Elsevier, vol. 97(1), pages 145-177, July.
    34. Hausman, Jerry A & Taylor, William E, 1983. "Identification in Linear Simultaneous Equations Models with Covariance Restrictions: An Instrumental Variables Interpretation," Econometrica, Econometric Society, vol. 51(5), pages 1527-1549, September.
    35. Gibbons, Stephen & Machin, Stephen, 2005. "Valuing rail access using transport innovations," Journal of Urban Economics, Elsevier, vol. 57(1), pages 148-169, January.
    36. Kelejian, Harry H. & Prucha, Ingmar R., 2004. "Estimation of simultaneous systems of spatially interrelated cross sectional equations," Journal of Econometrics, Elsevier, vol. 118(1-2), pages 27-50.
    37. Boyan Jovanovic & Peter L. Rousseau, 2002. "The Q-Theory of Mergers," American Economic Review, American Economic Association, vol. 92(2), pages 198-204, May.
    38. Sanjeev Goyal, 2005. "Strong and Weak Links," Journal of the European Economic Association, MIT Press, vol. 3(2-3), pages 608-616, 04/05.
    39. Kapoor, Mudit & Kelejian, Harry H. & Prucha, Ingmar R., 2007. "Panel data models with spatially correlated error components," Journal of Econometrics, Elsevier, vol. 140(1), pages 97-130, September.
    40. Hall, Alastair R., 2004. "Generalized Method of Moments," OUP Catalogue, Oxford University Press, number 9780198775201.
    41. Townsend, Robert M, 1983. "Forecasting the Forecasts of Others," Journal of Political Economy, University of Chicago Press, vol. 91(4), pages 546-588, August.
    42. Conley, T. G., 1999. "GMM estimation with cross sectional dependence," Journal of Econometrics, Elsevier, vol. 92(1), pages 1-45, September.
    43. Bernard Fingleton, 2003. "Externalities, Economic Geography, And Spatial Econometrics: Conceptual And Modeling Developments," International Regional Science Review, , vol. 26(2), pages 197-207, April.
    44. Manuel Arellano & Stephen Bond, 1991. "Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations," Review of Economic Studies, Oxford University Press, vol. 58(2), pages 277-297.
    45. A. Bhattacharjee & C. Higson & S. Holly & P. Kattuman, 2009. "Macroeconomic Instability and Business Exit: Determinants of Failures and Acquisitions of UK Firms," Economica, London School of Economics and Political Science, vol. 76(301), pages 108-131, February.
    46. Giacomini, Raffaella & Granger, Clive W. J., 2004. "Aggregation of space-time processes," Journal of Econometrics, Elsevier, vol. 118(1-2), pages 7-26.
    47. Joris Pinkse & Margaret Slade, 2007. "Semi-structural models of advertising competition," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(7), pages 1227-1246.
    48. Petra Gerlach‐Kristen, 2004. "Is the MPC's Voting Record Informative about Future UK Monetary Policy?," Scandinavian Journal of Economics, Wiley Blackwell, vol. 106(2), pages 299-313, June.
    49. Goyal, Sanjeev & Vega-Redondo, Fernando, 2007. "Structural holes in social networks," Journal of Economic Theory, Elsevier, vol. 137(1), pages 460-492, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arnab Bhattacharjee & Sean Holly, 2013. "Understanding Interactions in Social Networks and Committees," Spatial Economic Analysis, Taylor & Francis Journals, vol. 8(1), pages 23-53, March.
    2. Arnab Bhattacharjee & Sean Holly, 2011. "Structural interactions in spatial panels," Empirical Economics, Springer, vol. 40(1), pages 69-94, February.
    3. Arnab Bhattacharjee & Sean Holly, 2011. "Structural interactions in spatial panels," Empirical Economics, Springer, vol. 40(1), pages 69-94, February.
    4. Gopal K. Basak & Arnab Bhattacharjee & Samarjit Das, 2018. "Causal ordering and inference on acyclic networks," Empirical Economics, Springer, vol. 55(1), pages 213-232, August.
    5. Pesaran, M. Hashem & Tosetti, Elisa, 2011. "Large panels with common factors and spatial correlation," Journal of Econometrics, Elsevier, vol. 161(2), pages 182-202, April.
    6. Natalia Bailey & Sean Holly & M. Hashem Pesaran, 2016. "A Two‐Stage Approach to Spatio‐Temporal Analysis with Strong and Weak Cross‐Sectional Dependence," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(1), pages 249-280, January.
    7. Kelejian, Harry H. & Piras, Gianfranco, 2014. "Estimation of spatial models with endogenous weighting matrices, and an application to a demand model for cigarettes," Regional Science and Urban Economics, Elsevier, vol. 46(C), pages 140-149.
    8. Bhattacharjee, Arnab & Jensen-Butler, Chris, 2013. "Estimation of the spatial weights matrix under structural constraints," Regional Science and Urban Economics, Elsevier, vol. 43(4), pages 617-634.
    9. Sarafidis, Vasilis & Yamagata, Takashi & Robertson, Donald, 2009. "A test of cross section dependence for a linear dynamic panel model with regressors," Journal of Econometrics, Elsevier, vol. 148(2), pages 149-161, February.
    10. Vasilis Sarafidis & Tom Wansbeek, 2012. "Cross-Sectional Dependence in Panel Data Analysis," Econometric Reviews, Taylor & Francis Journals, vol. 31(5), pages 483-531, September.
    11. Holly, Sean & Hashem Pesaran, M. & Yamagata, Takashi, 2011. "The spatial and temporal diffusion of house prices in the UK," Journal of Urban Economics, Elsevier, vol. 69(1), pages 2-23, January.
    12. Sarafidis, Vasilis, 2009. "GMM Estimation of Short Dynamic Panel Data Models With Error Cross-Sectional Dependence," MPRA Paper 25176, University Library of Munich, Germany.
    13. Kelejian, Harry H. & Prucha, Ingmar R., 2010. "Specification and estimation of spatial autoregressive models with autoregressive and heteroskedastic disturbances," Journal of Econometrics, Elsevier, vol. 157(1), pages 53-67, July.
    14. Luc Anselin, 2010. "Thirty years of spatial econometrics," Papers in Regional Science, Wiley Blackwell, vol. 89(1), pages 3-25, March.
    15. Bai, Jushan & Li, Kunpeng, 2021. "Dynamic spatial panel data models with common shocks," Journal of Econometrics, Elsevier, vol. 224(1), pages 134-160.
    16. Arnab Bhattacharjee & Sean Holly, 2006. "Taking Personalities out of Monetary Policy Decision Making? Interactions, Heterogeneity and Committee Decisions in the Bank of England’s MPC," CDMA Working Paper Series 200612, Centre for Dynamic Macroeconomic Analysis.
    17. David M. Drukker & Peter Egger & Ingmar R. Prucha, 2013. "On Two-Step Estimation of a Spatial Autoregressive Model with Autoregressive Disturbances and Endogenous Regressors," Econometric Reviews, Taylor & Francis Journals, vol. 32(5-6), pages 686-733, August.
    18. Arnab Bhattacharjee & Sean Holly, 2004. "Inflation Targeting, committee Decision Making and Uncertainty: The case of the Bank of England's MPC," Money Macro and Finance (MMF) Research Group Conference 2004 63, Money Macro and Finance Research Group.
    19. Harald Badinger & Peter Egger, 2015. "Fixed Effects and Random Effects Estimation of Higher-order Spatial Autoregressive Models with Spatial Autoregressive and Heteroscedastic Disturbances," Spatial Economic Analysis, Taylor & Francis Journals, vol. 10(1), pages 11-35, March.
    20. Achim Ahrens & Arnab Bhattacharjee, 2015. "Two-Step Lasso Estimation of the Spatial Weights Matrix," Econometrics, MDPI, vol. 3(1), pages 1-28, March.

    More about this item

    Keywords

    Committee decision making; Social networks; Cross section and spatial interaction; Generalised method of moments; Censored regression model; Expectation-Maximisation Algorithm; Monetary policy; Interest rates;
    All these keywords.

    JEL classification:

    • D71 - Microeconomics - - Analysis of Collective Decision-Making - - - Social Choice; Clubs; Committees; Associations
    • D85 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Network Formation
    • E43 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Interest Rates: Determination, Term Structure, and Effects
    • E52 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit - - - Monetary Policy
    • C31 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions; Social Interaction Models
    • C34 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Truncated and Censored Models; Switching Regression Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cam:camdae:1003. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://www.econ.cam.ac.uk/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Jake Dyer (email available below). General contact details of provider: https://www.econ.cam.ac.uk/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.