IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v83y1998i1-2p185-212.html
   My bibliography  Save this article

The finite sample properties of simultaneous equations' estimates and estimators Bayesian and non-Bayesian approaches

Author

Listed:
  • Zellner, Arnold

Abstract

No abstract is available for this item.

Suggested Citation

  • Zellner, Arnold, 1998. "The finite sample properties of simultaneous equations' estimates and estimators Bayesian and non-Bayesian approaches," Journal of Econometrics, Elsevier, vol. 83(1-2), pages 185-212.
  • Handle: RePEc:eee:econom:v:83:y:1998:i:1-2:p:185-212
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4076(97)00069-9
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Geweke, John, 1989. "Bayesian Inference in Econometric Models Using Monte Carlo Integration," Econometrica, Econometric Society, vol. 57(6), pages 1317-1339, November.
    2. John F. Geweke, 1994. "Bayesian comparison of econometric models," Working Papers 532, Federal Reserve Bank of Minneapolis.
    3. Nelson, Charles R & Startz, Richard, 1990. "Some Further Results on the Exact Small Sample Properties of the Instrumental Variable Estimator," Econometrica, Econometric Society, vol. 58(4), pages 967-976, July.
    4. Diebold, Francis X. & Lamb, Russell L., 1997. "Why are estimates of agricultural supply response so variable?," Journal of Econometrics, Elsevier, vol. 76(1-2), pages 357-373.
    5. Zellner, Arnold & Highfield, Richard A., 1988. "Calculation of maximum entropy distributions and approximation of marginalposterior distributions," Journal of Econometrics, Elsevier, vol. 37(2), pages 195-209, February.
    6. Sawa, Takamitsu, 1973. "The mean square error of a combined estimator and numerical comparison with the TSLS estimator," Journal of Econometrics, Elsevier, vol. 1(2), pages 115-132, June.
    7. Zellner, Arnold & Bauwens, Luc & Van Dijk, Herman K., 1988. "Bayesian specification analysis and estimation of simultaneous equation models using Monte Carlo methods," Journal of Econometrics, Elsevier, vol. 38(1-2), pages 39-72.
    8. Poirier, Dale J, 1992. "A Return to the Battlefront," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(4), pages 473-474, October.
    9. Dreze, Jacques H. & Richard, Jean-Francois, 1983. "Bayesian analysis of simultaneous equation systems," Handbook of Econometrics,in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 1, chapter 9, pages 517-598 Elsevier.
    10. Fuller, Wayne A, 1977. "Some Properties of a Modification of the Limited Information Estimator," Econometrica, Econometric Society, vol. 45(4), pages 939-953, May.
    11. Christ, Carl F, 1994. "The Cowles Commission's Contributions to Econometrics at Chicago, 1939-1955," Journal of Economic Literature, American Economic Association, vol. 32(1), pages 30-59, March.
    12. Griffiths, William & Dao, Dan, 1980. "A note on a Bayesian estimator in an autocorrelated error model," Journal of Econometrics, Elsevier, vol. 12(3), pages 389-392, April.
    13. Zellner, Arnold, 1980. "A Note on the Relationship of Minimum Expected Loss (MELO) and Other Structural Coefficient Estimates," The Review of Economics and Statistics, MIT Press, vol. 62(3), pages 482-484, August.
    14. Sawa, Takamitsu, 1972. "Finite-Sample Properties of the k-Class Estimators," Econometrica, Econometric Society, vol. 40(4), pages 653-680, July.
    15. Zellner, Arnold & Moulton, Brent R., 1985. "Bayesian regression diagnostics with applications to international consumption and income data," Journal of Econometrics, Elsevier, vol. 29(1-2), pages 187-211.
    16. Swamy, P A V B & Mehta, J S, 1983. "Further Results on Zellner's Minimum Expected Loss and Full Information Maximum Likelihood Estimators for Undersized Samples," Journal of Business & Economic Statistics, American Statistical Association, vol. 1(2), pages 154-162, April.
    17. Park, Soo-Bin, 1982. "Some sampling properties of minimum expected loss (MELO) estimators of structural coefficients," Journal of Econometrics, Elsevier, vol. 18(3), pages 295-311, April.
    18. Kloek, Tuen & van Dijk, Herman K, 1978. "Bayesian Estimates of Equation System Parameters: An Application of Integration by Monte Carlo," Econometrica, Econometric Society, vol. 46(1), pages 1-19, January.
    19. Zellner, Arnold, 1978. "Estimation of functions of population means and regression coefficients including structural coefficients : A minimum expected loss (MELO) approach," Journal of Econometrics, Elsevier, vol. 8(2), pages 127-158, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chuanming Gao & Kajal Lahiri, 2000. "A Comparison of Some Recent Bayesian and Classical Procedures for Simultaneous Equation Models with Weak Instruments," Econometric Society World Congress 2000 Contributed Papers 0230, Econometric Society.
    2. Diebold, Francis X. & Lamb, Russell L., 1997. "Why are estimates of agricultural supply response so variable?," Journal of Econometrics, Elsevier, vol. 76(1-2), pages 357-373.
    3. Kim, Jae-Young, 2002. "Limited information likelihood and Bayesian analysis," Journal of Econometrics, Elsevier, vol. 107(1-2), pages 175-193, March.
    4. Kleibergen, Frank & Zivot, Eric, 2003. "Bayesian and classical approaches to instrumental variable regression," Journal of Econometrics, Elsevier, vol. 114(1), pages 29-72, May.
    5. Atkinson, Scott E. & Dorfman, Jeffrey H., 2005. "Bayesian measurement of productivity and efficiency in the presence of undesirable outputs: crediting electric utilities for reducing air pollution," Journal of Econometrics, Elsevier, vol. 126(2), pages 445-468, June.
    6. Scott Atkinson & Jeffrey Dorfman, 2005. "Multiple Comparisons with the Best: Bayesian Precision Measures of Efficiency Rankings," Journal of Productivity Analysis, Springer, vol. 23(3), pages 359-382, July.
    7. Conley, Timothy G. & Hansen, Christian B. & McCulloch, Robert E. & Rossi, Peter E., 2008. "A semi-parametric Bayesian approach to the instrumental variable problem," Journal of Econometrics, Elsevier, vol. 144(1), pages 276-305, May.
    8. Kim, Jae-Young, 2014. "An alternative quasi likelihood approach, Bayesian analysis and data-based inference for model specification," Journal of Econometrics, Elsevier, vol. 178(P1), pages 132-145.
    9. Donald W.K. Andrews & James H. Stock, 2005. "Inference with Weak Instruments," Cowles Foundation Discussion Papers 1530, Cowles Foundation for Research in Economics, Yale University.
    10. Gao, Chuanming & Lahiri, Kajal, 2002. "A note on the double k-class estimator in simultaneous equations," Journal of Econometrics, Elsevier, vol. 108(1), pages 101-111, May.
    11. Agee, Mark D. & Atkinson, Scott E. & Crocker, Thomas D. & Williams, Jonathan W., 2014. "Non-separable pollution control: Implications for a CO2 emissions cap and trade system," Resource and Energy Economics, Elsevier, vol. 36(1), pages 64-82.
    12. Scott E. Atkinson & Jeffrey H. Dorfman, 2009. "Feasible estimation of firm-specific allocative inefficiency through Bayesian numerical methods," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(4), pages 675-697.
    13. Mittelhammer, Ron C. & Judge, George G., 2005. "Combining estimators to improve structural model estimation and inference under quadratic loss," Journal of Econometrics, Elsevier, vol. 128(1), pages 1-29, September.
    14. Radchenko, Stanislav & Tsurumi, Hiroki, 2006. "Limited information Bayesian analysis of a simultaneous equation with an autocorrelated error term and its application to the U.S. gasoline market," Journal of Econometrics, Elsevier, vol. 133(1), pages 31-49, July.
    15. Zellner, Arnold, 2006. "S. James Press And Bayesian Analysis," Macroeconomic Dynamics, Cambridge University Press, vol. 10(05), pages 667-684, November.
    16. Zellner, Arnold & Ando, Tomohiro, 2010. "Bayesian and non-Bayesian analysis of the seemingly unrelated regression model with Student-t errors, and its application for forecasting," International Journal of Forecasting, Elsevier, vol. 26(2), pages 413-434, April.
    17. Heckelei, Thomas & Mittelhammer, Ron C., 2003. "Bayesian bootstrap multivariate regression," Journal of Econometrics, Elsevier, vol. 112(2), pages 241-264, February.
    18. Zellner, Arnold, 2007. "Some aspects of the history of Bayesian information processing," Journal of Econometrics, Elsevier, vol. 138(2), pages 388-404, June.
    19. Zellner, Arnold, 2010. "Bayesian shrinkage estimates and forecasts of individual and total or aggregate outcomes," Economic Modelling, Elsevier, vol. 27(6), pages 1392-1397, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:83:y:1998:i:1-2:p:185-212. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.