IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Some Recent Developments in Econometric Inference

  • Arnold Zellner

Recent results in information theory, see Soofi (1996; 2001) for a review, include derivations of optimal information processing rules, including Bayes' theorem, for learning from data based on minimizing a criterion functional, namely output information minus input information as shown in Zellner (1988; 1991; 1997; 2002). Herein, solution post data densities for parameters are obtained and studied for cases in which the input information is that in (1) a likelihood function and a prior density; (2) only a likelihood function; and (3) neither a prior nor a likelihood function but only input information in the form of post data moments of parameters, as in the Bayesian method of moments approach. Then it is shown how optimal output densities can be employed to obtain predictive densities and optimal, finite sample structural coefficient estimates using three alternative loss functions. Such optimal estimates are compared with usual estimates, e.g., maximum likelihood, two-stage least squares, ordinary least squares, etc. Some Monte Carlo experimental results in the literature are discussed and implications for the future are provided.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.tandfonline.com/doi/abs/10.1081/ETC-120020463
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Taylor & Francis Journals in its journal Econometric Reviews.

Volume (Year): 22 (2003)
Issue (Month): 2 ()
Pages: 203-215

as
in new window

Handle: RePEc:taf:emetrv:v:22:y:2003:i:2:p:203-215
Contact details of provider: Web page: http://www.tandfonline.com/LECR20

Order Information: Web: http://www.tandfonline.com/pricing/journal/LECR20

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Zellner, Arnold, 1980. "A Note on the Relationship of Minimum Expected Loss (MELO) and Other Structural Coefficient Estimates," The Review of Economics and Statistics, MIT Press, vol. 62(3), pages 482-84, August.
  2. Min, C.K. & Zellner, A., 1992. ""Bayesian and Non-Bayesian Methods for Combining Models and Forecasts with Applications to Forecasting International Growth Rates"," Papers 90-92-23, California Irvine - School of Social Sciences.
  3. Diebold, Francis X. & Lamb, Russell L., 1997. "Why are estimates of agricultural supply response so variable?," Journal of Econometrics, Elsevier, vol. 76(1-2), pages 357-373.
  4. Park, Soo-Bin, 1982. "Some sampling properties of minimum expected loss (MELO) estimators of structural coefficients," Journal of Econometrics, Elsevier, vol. 18(3), pages 295-311, April.
  5. Shen, Edward Z. & Perloff, Jeffrey M., 2001. "Maximum entropy and Bayesian approaches to the ratio problem," Journal of Econometrics, Elsevier, vol. 104(2), pages 289-313, September.
  6. Sawa, Takamitsu, 1972. "Finite-Sample Properties of the k-Class Estimators," Econometrica, Econometric Society, vol. 40(4), pages 653-80, July.
  7. Zellner, Arnold, 1978. "Estimation of functions of population means and regression coefficients including structural coefficients : A minimum expected loss (MELO) approach," Journal of Econometrics, Elsevier, vol. 8(2), pages 127-158, October.
  8. Zellner, Arnold, 1996. "Models, prior information, and Bayesian analysis," Journal of Econometrics, Elsevier, vol. 75(1), pages 51-68, November.
  9. Jeffrey T. LaFrance, 1999. "Inferring the Nutrient Content of Food With Prior Information," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 81(3), pages 728-734.
  10. Golan, Amos & Judge, George G. & Miller, Douglas, 1996. "Maximum Entropy Econometrics," Staff General Research Papers 1488, Iowa State University, Department of Economics.
  11. Zellner, Arnold & Chen, Bin, 2001. "Bayesian Modeling Of Economies And Data Requirements," Macroeconomic Dynamics, Cambridge University Press, vol. 5(05), pages 673-700, November.
  12. Zellner, A., 1988. "Optimal Information-Processing And Bayes' Theorem," Papers m8803, Southern California - Department of Economics.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:taf:emetrv:v:22:y:2003:i:2:p:203-215. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ()

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.