IDEAS home Printed from https://ideas.repec.org/a/gam/jecnmx/v7y2019i3p33-d252767.html
   My bibliography  Save this article

A Comparison of Some Bayesian and Classical Procedures for Simultaneous Equation Models with Weak Instruments

Author

Listed:
  • Chuanming Gao

    () (Fannie Mae, 1100 15th St NW, Washington, DC 20005, USA)

  • Kajal Lahiri

    () (Department of Economics, University at Albany, SUNY, Albany, NY 12222, USA)

Abstract

We compare the finite sample performance of a number of Bayesian and classical procedures for limited information simultaneous equations models with weak instruments by a Monte Carlo study. We consider Bayesian approaches developed by Chao and Phillips, Geweke, Kleibergen and van Dijk, and Zellner. Amongst the sampling theory methods, OLS, 2SLS, LIML, Fuller’s modified LIML, and the jackknife instrumental variable estimator (JIVE) due to Angrist et al. and Blomquist and Dahlberg are also considered. Since the posterior densities and their conditionals in Chao and Phillips and Kleibergen and van Dijk are nonstandard, we use a novel “Gibbs within Metropolis–Hastings” algorithm, which only requires the availability of the conditional densities from the candidate generating density. Our results show that with very weak instruments, there is no single estimator that is superior to others in all cases. When endogeneity is weak, Zellner’s MELO does the best. When the endogeneity is not weak and ρ ω 12 > 0 , where ρ is the correlation coefficient between the structural and reduced form errors, and ω 12 is the covariance between the unrestricted reduced form errors, the Bayesian method of moments (BMOM) outperforms all other estimators by a wide margin. When the endogeneity is not weak and β ρ < 0 ( β being the structural parameter), the Kleibergen and van Dijk approach seems to work very well. Surprisingly, the performance of JIVE was disappointing in all our experiments.

Suggested Citation

  • Chuanming Gao & Kajal Lahiri, 2019. "A Comparison of Some Bayesian and Classical Procedures for Simultaneous Equation Models with Weak Instruments," Econometrics, MDPI, Open Access Journal, vol. 7(3), pages 1-28, July.
  • Handle: RePEc:gam:jecnmx:v:7:y:2019:i:3:p:33-:d:252767
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2225-1146/7/3/33/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2225-1146/7/3/33/
    Download Restriction: no

    References listed on IDEAS

    as
    1. Blomquist, Soren & Dahlberg, Matz, 1999. "Small Sample Properties of LIML and Jackknife IV Estimators: Experiments with Weak Instruments," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 14(1), pages 69-88, Jan.-Feb..
    2. Radchenko, Stanislav & Tsurumi, Hiroki, 2006. "Limited information Bayesian analysis of a simultaneous equation with an autocorrelated error term and its application to the U.S. gasoline market," Journal of Econometrics, Elsevier, vol. 133(1), pages 31-49, July.
    3. Douglas Staiger & James H. Stock, 1997. "Instrumental Variables Regression with Weak Instruments," Econometrica, Econometric Society, vol. 65(3), pages 557-586, May.
    4. Paul J. Devereux & Daniel A. Ackerberg, 2006. "Comment on 'The case against JIVE'," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(6), pages 835-838.
    5. Angrist, J D & Imbens, G W & Krueger, A B, 1999. "Jackknife Instrumental Variables Estimation," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 14(1), pages 57-67, Jan.-Feb..
    6. Dale J. Poirier, 1995. "Intermediate Statistics and Econometrics: A Comparative Approach," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262161494, December.
    7. Conley, Timothy G. & Hansen, Christian B. & McCulloch, Robert E. & Rossi, Peter E., 2008. "A semi-parametric Bayesian approach to the instrumental variable problem," Journal of Econometrics, Elsevier, vol. 144(1), pages 276-305, May.
    8. Matz Dahlberg & Sören Blomquist, 2006. "The case against JIVE: a comment," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(6), pages 839-841.
    9. Maddala, G S & Jeong, Jinook, 1992. "On the Exact Small Sample Distribution of the Instrumental Variable Estimator," Econometrica, Econometric Society, vol. 60(1), pages 181-183, January.
    10. Buse, A, 1992. "The Bias of Instrumental Variable Estimators," Econometrica, Econometric Society, vol. 60(1), pages 173-180, January.
    11. Kleibergen, Frank & van Dijk, Herman K., 1998. "Bayesian Simultaneous Equations Analysis Using Reduced Rank Structures," Econometric Theory, Cambridge University Press, vol. 14(6), pages 701-743, December.
    12. Pagan, Adrian, 1979. "Some consequences of viewing LIML as an iterated Aitken estimator," Economics Letters, Elsevier, vol. 3(4), pages 369-372.
    13. Zellner, Arnold, 1978. "Estimation of functions of population means and regression coefficients including structural coefficients : A minimum expected loss (MELO) approach," Journal of Econometrics, Elsevier, vol. 8(2), pages 127-158, October.
    14. Chao, J. C. & Phillips, P. C. B., 1998. "Posterior distributions in limited information analysis of the simultaneous equations model using the Jeffreys prior," Journal of Econometrics, Elsevier, vol. 87(1), pages 49-86, August.
    15. Zellner, Arnold, 1998. "The finite sample properties of simultaneous equations' estimates and estimators Bayesian and non-Bayesian approaches," Journal of Econometrics, Elsevier, vol. 83(1-2), pages 185-212.
    16. Maddala, G S, 1976. "Weak Priors and Sharp Posteriors in Simultaneous Equation Models," Econometrica, Econometric Society, vol. 44(2), pages 345-351, March.
    17. Geweke, John, 1996. "Bayesian reduced rank regression in econometrics," Journal of Econometrics, Elsevier, vol. 75(1), pages 121-146, November.
    18. Kleibergen, F.R., 1998. "Conditional densities in econometrics," Econometric Institute Research Papers EI 9853, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    19. Dwivedi, T. D. & Srivastava, V. K., 1984. "Exact finite sample properties of double k-class estimators in simultaneous equations," Journal of Econometrics, Elsevier, vol. 25(3), pages 263-283, July.
    20. DREZE, Jacques H. & MORALES, Juan-Antonio, 1976. "Bayesian full information analysis of simultaneous equations," CORE Discussion Papers RP 275, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    limited information estimation; weak instruments; Metropolis–Hastings algorithm; Gibbs sampler; Monte Carlo method;

    JEL classification:

    • B23 - Schools of Economic Thought and Methodology - - History of Economic Thought since 1925 - - - Econometrics; Quantitative and Mathematical Studies
    • C - Mathematical and Quantitative Methods
    • C00 - Mathematical and Quantitative Methods - - General - - - General
    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • C2 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables
    • C3 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables
    • C4 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics
    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling
    • C8 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jecnmx:v:7:y:2019:i:3:p:33-:d:252767. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (XML Conversion Team). General contact details of provider: https://www.mdpi.com/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.