IDEAS home Printed from https://ideas.repec.org/p/ecm/wc2000/1622.html
   My bibliography  Save this paper

On the Bias and MSE of the IV Estimator Under Weak Identification

Author

Listed:
  • John Chao

    (University of Maryland)

Abstract

In this paper we provide further results on the properties of the IV estimator in the presence of weak instruments. We begin by formalizing the notion of weak identification within the local-to-zero asymptotic framework of Staiger and Stock (1997), and deriving explicit analytical formulae for the asymptotic bias and mean square error (MSE) of the IV estimator. These results generalize earlier findings by Staiger and Stock (1997), who give an approximate measure for the asymptotic bias of the two-stage least squares (2SLS) estimator relative to that of the OLS estimator. Because our analytical formulae for bias and MSE are complex functionals of confluent hypergeometric functions, we also derive approximations for these formulae which are based on an expansion that allows the number of instruments to grow to infinity while keeping the population analogue of the first stage F-statistic fixed. In addition, we provide a series of regression results that show this expansion to give excellent approximations for the bias and MSE functions in general. These approximations allow us to make several interesting additional observations. For example, when the approximation method is applied to the bias, the lead term of the expansion, when appropriately standardized by the asymptotic bias of the OLS estimator, is exactly the relative bias measure given in Staiger and Stock (1997) in the case where there is only one endogenous regressor. In addition, the lead term of the MSE expansion is the square of the lead term of the bias expansion, implying that the variance component of the MSE is of a lower order relative to the bias component in a scenario where the number of instruments used is taken to be large while the population analogue of the first stage F-statistic is kept constant. One feature of our approach which ties our findings to the earlier IV literature is that our results apply not only to the weak instrument case asymptotically, but also to the finite sample case with fixed (possibly good) instruments and Gaussian errors, since our formulae correspond to the exact bias and MSE functionals when a fixed instrument/Gaussian model is assumed.

Suggested Citation

  • John Chao, 2000. "On the Bias and MSE of the IV Estimator Under Weak Identification," Econometric Society World Congress 2000 Contributed Papers 1622, Econometric Society.
  • Handle: RePEc:ecm:wc2000:1622
    as

    Download full text from publisher

    File URL: http://fmwww.bc.edu/RePEc/es2000/1622.pdf
    File Function: main text
    Download Restriction: no

    References listed on IDEAS

    as
    1. Hillier, Grant H & Kinal, Terrence W & Srivastava, V K, 1984. "On the Moments of Ordinary Least Squares and Instrumental Variables Estimators in a General Structural Equation," Econometrica, Econometric Society, vol. 52(1), pages 185-202, January.
    2. Ullah, Aman, 1974. "On the sampling distribution of improved estimators for coefficients in linear regression," Journal of Econometrics, Elsevier, vol. 2(2), pages 143-150, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jean-Marie Dufour & Mohamed Taamouti, 2005. "Projection-Based Statistical Inference in Linear Structural Models with Possibly Weak Instruments," Econometrica, Econometric Society, vol. 73(4), pages 1351-1365, July.
    2. Hahn, Jinyong & Kuersteiner, Guido, 2002. "Discontinuities of weak instrument limiting distributions," Economics Letters, Elsevier, vol. 75(3), pages 325-331, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecm:wc2000:1622. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum). General contact details of provider: http://edirc.repec.org/data/essssea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.