IDEAS home Printed from https://ideas.repec.org/p/kan/wpaper/202410.html
   My bibliography  Save this paper

Shrinkage Estimation and Forecasting in Dynamic Regression Models under Structural Instability

Author

Listed:
  • Ali Mehrabani

    (Department of Economics, University of Kansas, Lawrence, KS 66045)

  • Shahnaz Parsaeian

    (Department of Economics, University of Kansas, Lawrence, KS 66045)

  • Aman Ullah

    (Department of Economics, University of California at Riverside, CA 92521)

Abstract

This paper introduces a Stein-like shrinkage method for estimating slope coefficients and forecasting in first order dynamic regression models under structural breaks. The model allows for unit root and non-stationary regressors. The proposed shrinkage estimator is a weighted average of a restricted estimator that ignores the break in the slope coefficients, and an unrestricted estimator that uses the observations within each regime. The restricted estimator is the most efficient estimator but inconsistent when there is a break. However, the unrestricted estimator is consistent but not efficient. Therefore, the proposed shrinkage estimator balances the trade-off between the bias and variance efficiency of the restricted estimator. The averaging weight is proportional to the weighted distance of the restricted estimator, and the unrestricted estimator. We derive the analytical large-sample approximation of the bias, mean squared error, and risk for the shrinkage estimator, the unrestricted estimator, and the restricted estimator. We show that the risk of the shrinkage estimator is lower than the risk of the unrestricted estimator under any break size and break points. Moreover, we extend the results for the model with a unit root and non-stationary regressors. We evaluate the finite sample performance of our proposed method via extensive simulation study, and empirically in forecasting output growth

Suggested Citation

  • Ali Mehrabani & Shahnaz Parsaeian & Aman Ullah, 2024. "Shrinkage Estimation and Forecasting in Dynamic Regression Models under Structural Instability," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202410, University of Kansas, Department of Economics.
  • Handle: RePEc:kan:wpaper:202410
    as

    Download full text from publisher

    File URL: https://kuwpaper.ku.edu/2024Papers/202410.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wu, De-Min, 1973. "Alternative Tests of Independence Between Stochastic Regressors and Disturbances," Econometrica, Econometric Society, vol. 41(4), pages 733-750, July.
    2. Phillips, Peter C B, 1985. "The Exact Distribution of LIML: II," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 26(1), pages 21-36, February.
    3. Donald, Stephen G & Newey, Whitney K, 2001. "Choosing the Number of Instruments," Econometrica, Econometric Society, vol. 69(5), pages 1161-1191, September.
    4. Guido Kuersteiner & Ryo Okui, 2010. "Constructing Optimal Instruments by First-Stage Prediction Averaging," Econometrica, Econometric Society, vol. 78(2), pages 697-718, March.
    5. Ali Mehrabani & Aman Ullah, 2020. "Improved Average Estimation in Seemingly Unrelated Regressions," Econometrics, MDPI, vol. 8(2), pages 1-22, April.
    6. Ullah, Aman, 1974. "On the sampling distribution of improved estimators for coefficients in linear regression," Journal of Econometrics, Elsevier, vol. 2(2), pages 143-150, July.
    7. Hausman, Jerry, 2015. "Specification tests in econometrics," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 38(2), pages 112-134.
    8. Bruce E. Hansen, 2017. "Stein-like 2SLS estimator," Econometric Reviews, Taylor & Francis Journals, vol. 36(6-9), pages 840-852, October.
    9. Sawa, Takamitsu, 1973. "The mean square error of a combined estimator and numerical comparison with the TSLS estimator," Journal of Econometrics, Elsevier, vol. 1(2), pages 115-132, June.
    10. John C. Chao & Norman R. Swanson, 2005. "Consistent Estimation with a Large Number of Weak Instruments," Econometrica, Econometric Society, vol. 73(5), pages 1673-1692, September.
    11. Anderson, T. W. & Kunitomo, Naoto & Morimune, Kimio, 1986. "Comparing Single-Equation Estimators in a Simultaneous Equation System," Econometric Theory, Cambridge University Press, vol. 2(1), pages 1-32, April.
    12. Ullah, Aman, 2004. "Finite Sample Econometrics," OUP Catalogue, Oxford University Press, number 9780198774488, Decembrie.
    13. Maasoumi, Esfandiar, 1978. "A Modified Stein-like Estimator for the Reduced Form Coefficients of Simultaneous Equations," Econometrica, Econometric Society, vol. 46(3), pages 695-703, May.
    14. Joshua D. Angrist & Alan B. Keueger, 1991. "Does Compulsory School Attendance Affect Schooling and Earnings?," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 106(4), pages 979-1014.
    15. Donald, Stephen G. & Imbens, Guido W. & Newey, Whitney K., 2009. "Choosing instrumental variables in conditional moment restriction models," Journal of Econometrics, Elsevier, vol. 152(1), pages 28-36, September.
    16. Anderson, T W & Sawa, Takamitsu, 1979. "Evaluation of the Distribution Function of the Two-Stage Least Squares Estimate," Econometrica, Econometric Society, vol. 47(1), pages 163-182, January.
    17. Anderson, T W, 1977. "Asymptotic Expansions of the Distributions of Estimates in Simultaneous Equations for Alternative Parameter Sequences," Econometrica, Econometric Society, vol. 45(2), pages 509-518, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ali Mehrabani, 2024. "Stein-Like Shrinkage Estimators for Coefficients of a Single-Equation in Simultaneous Equation Systems," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202414, University of Kansas, Department of Economics.
    2. Muhammad Qasim, 2024. "A weighted average limited information maximum likelihood estimator," Statistical Papers, Springer, vol. 65(5), pages 2641-2666, July.
    3. Guilhem Bascle, 2008. "Controlling for endogeneity with instrumental variables in strategic management research," Post-Print hal-00576795, HAL.
    4. Chirok Han & Peter C. B. Phillips, 2006. "GMM with Many Moment Conditions," Econometrica, Econometric Society, vol. 74(1), pages 147-192, January.
    5. Kleibergen, Frank & Zivot, Eric, 2003. "Bayesian and classical approaches to instrumental variable regression," Journal of Econometrics, Elsevier, vol. 114(1), pages 29-72, May.
    6. Yoonseok Lee & Yu Zhou, 2015. "Averaged Instrumental Variables Estimators," Center for Policy Research Working Papers 180, Center for Policy Research, Maxwell School, Syracuse University.
    7. Xu Cheng & Zhipeng Liao, 2012. "Select the Valid and Relevant Moments: A One-Step Procedure for GMM with Many Moments," PIER Working Paper Archive 12-045, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    8. Wang, Wenjie & Kaffo, Maximilien, 2016. "Bootstrap inference for instrumental variable models with many weak instruments," Journal of Econometrics, Elsevier, vol. 192(1), pages 231-268.
    9. Martins, Luis F. & Gabriel, Vasco J., 2014. "Linear instrumental variables model averaging estimation," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 709-724.
    10. Dennis Lim & Wenjie Wang & Yichong Zhang, 2022. "A Conditional Linear Combination Test with Many Weak Instruments," Papers 2207.11137, arXiv.org, revised Apr 2023.
    11. Zhenhong Huang & Chen Wang & Jianfeng Yao, 2023. "A specification test for the strength of instrumental variables," Papers 2302.14396, arXiv.org.
    12. Alastair R. Hall, 2015. "Econometricians Have Their Moments: GMM at 32," The Economic Record, The Economic Society of Australia, vol. 91(S1), pages 1-24, June.
    13. Anderson, T.W. & Kunitomo, Naoto & Matsushita, Yukitoshi, 2011. "On finite sample properties of alternative estimators of coefficients in a structural equation with many instruments," Journal of Econometrics, Elsevier, vol. 165(1), pages 58-69.
    14. Lim, Dennis & Wang, Wenjie & Zhang, Yichong, 2024. "A conditional linear combination test with many weak instruments," Journal of Econometrics, Elsevier, vol. 238(2).
    15. Keisuke Hirano & Jack R. Porter, 2015. "Location Properties of Point Estimators in Linear Instrumental Variables and Related Models," Econometric Reviews, Taylor & Francis Journals, vol. 34(6-10), pages 720-733, December.
    16. Russell Davidson & Victoria Zinde‐Walsh, 2017. "Advances in specification testing," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 50(5), pages 1595-1631, December.
    17. Shakil, Golam Saroare & Marsh, Thomas L., 2021. "One Instrument to Rule Them All?," 2021 Annual Meeting, August 1-3, Austin, Texas 314047, Agricultural and Applied Economics Association.
    18. Firmin Doko Tchatoka & Wenjie Wang, 2020. "Uniform Inference after Pretesting for Exogeneity," School of Economics and Public Policy Working Papers 2020-05, University of Adelaide, School of Economics and Public Policy.
    19. Rodrigo Alfaro, 2008. "Higher Order Properties of the Symmetricallr Normalized Instrumental Variable Estimator," Working Papers Central Bank of Chile 500, Central Bank of Chile.
    20. Carrasco, Marine & Tchuente, Guy, 2015. "Regularized LIML for many instruments," Journal of Econometrics, Elsevier, vol. 186(2), pages 427-442.

    More about this item

    Keywords

    ARX-model; Asymptotic approximation; Dynamic regressions; Forecasting; Moment approximation; Non-stationary regressors; Structural breaks; Unit root.;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kan:wpaper:202410. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Professor Zongwu Cai (email available below). General contact details of provider: https://edirc.repec.org/data/deuksus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.