IDEAS home Printed from https://ideas.repec.org/p/mtl/montec/14-2016.html
   My bibliography  Save this paper

Exogeneity Tests, Incomplete Models, Weak Identification and Non-Gaussian Distributions : Invariance and Finite-Sample Distributional Theory

Author

Listed:
  • Firmin DOKO TCHATOKA
  • Jean-Marie DUFOUR

Abstract

We study the distribution of Durbin-Wu-Hausman (DWH) and Revankar-Hartley (RH) tests for exogeneity from a finite-sample viewpoint, under the null and alternative hypotheses. We consider linear structural models with possibly non-Gaussian errors, where structural parameters may not be identified and where reduced forms can be incompletely specified (or nonparametric). On level control, we characterize the null distributions of all the test statistics. Through conditioning and invariance arguments, we show that these distributions do not involve nuisance parameters. In particular, this applies to several test statistics for which no finite-sample distributional theory is yet available, such as the standard statistic proposed by Hausman (1978). The distributions of the test statistics may be non-standard – so corrections to usual asymptotic critical values are needed – but the characterizations are sufficiently explicit to yield finite-sample (Monte-Carlo) tests of the exogeneity hypothesis. The procedures so obtained are robust to weak identification, missing instruments or misspecified reduced forms, and can easily be adapted to allow for parametric non-Gaussian error distributions. We give a general invariance result (block triangular invariance) for exogeneity test statistics. This property yields a convenient exogeneity canonical form and a parsimonious reduction of the parameters on which power depends. In the extreme case where no structural parameter is identified, the distributions under the alternative hypothesis and the null hypothesis are identical, so the power function is flat, for all the exogeneity statistics. However, as soon as identification does not fail completely, this phenomenon typically disappears. We present simulation evidence which confirms the finite-sample theory. The theoretical results are illustrated with two empirical examples: the relation between trade and economic growth, and the widely studied problem of the return of education to earnings.

Suggested Citation

  • Firmin DOKO TCHATOKA & Jean-Marie DUFOUR, 2016. "Exogeneity Tests, Incomplete Models, Weak Identification and Non-Gaussian Distributions : Invariance and Finite-Sample Distributional Theory," Cahiers de recherche 14-2016, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
  • Handle: RePEc:mtl:montec:14-2016
    as

    Download full text from publisher

    File URL: http://www.cireqmontreal.com/wp-content/uploads/cahiers/14-2016-cah.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Christopher F Baum & Mark E. Schaffer & Steven Stillman, 2003. "Instrumental variables and GMM: Estimation and testing," Stata Journal, StataCorp LP, vol. 3(1), pages 1-31, March.
    2. Smith, Richard J., 1994. "Asymptotically Optimal Tests Using Limited Information and Testing for Exogeneity," Econometric Theory, Cambridge University Press, vol. 10(1), pages 53-69, March.
    3. Beaulieu, Marie-Claude & Dufour, Jean-Marie & Khalaf, Lynda, 2009. "Finite sample multivariate tests of asset pricing models with coskewness," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2008-2021, April.
    4. Firmin Doko Tchatoka, 2015. "On bootstrap validity for specification tests with weak instruments," Econometrics Journal, Royal Economic Society, vol. 18(1), pages 137-146, February.
    5. Marie-Claude Beaulieu & Jean-Marie Dufour & Lynda Khalaf, 2005. "Exact Multivariate Tests of Asset Pricing Models with Stable Asymmetric Distributions," Springer Books, in: Michèle Breton & Hatem Ben-Ameur (ed.), Numerical Methods in Finance, chapter 0, pages 173-191, Springer.
    6. Carolina Caetano, 2015. "A Test of Exogeneity Without Instrumental Variables in Models With Bunching," Econometrica, Econometric Society, vol. 83(4), pages 1581-1600, July.
    7. Jean-Marie Dufour, 2003. "Identification, weak instruments, and statistical inference in econometrics," Canadian Journal of Economics, Canadian Economics Association, vol. 36(4), pages 767-808, November.
    8. Jean‐Marie Dufour & Lynda Khalaf & Marie‐Claude Beaulieu, 2003. "Exact Skewness–Kurtosis Tests for Multivariate Normality and Goodness‐of‐Fit in Multivariate Regressions with Application to Asset Pricing Models," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 65(s1), pages 891-906, December.
    9. Engle, Robert F., 1982. "A general approach to lagrange multiplier model diagnostics," Journal of Econometrics, Elsevier, vol. 20(1), pages 83-104, October.
    10. Farebrother, R W, 1976. "A Remark on the Wu Test," Econometrica, Econometric Society, vol. 44(3), pages 475-477, May.
    11. Thurman, Walter N, 1986. "Endogeneity Testing in a Supply and Demand Framework," The Review of Economics and Statistics, MIT Press, vol. 68(4), pages 638-646, November.
    12. Jeong, Jinook & Yoon, Byung, 2007. "The Effect of Pseudo-exogenous Instrumental Variables on Hausman Test," MPRA Paper 9792, University Library of Munich, Germany.
    13. Tchatoka, Firmin Doko, 2015. "Subset Hypotheses Testing And Instrument Exclusion In The Linear Iv Regression," Econometric Theory, Cambridge University Press, vol. 31(6), pages 1192-1228, December.
    14. Jan F. Kiviet, 2013. "Identification and inference in a simultaneous equation under alternative information sets and sampling schemes," Econometrics Journal, Royal Economic Society, vol. 16(1), pages 24-59, February.
    15. David H. Romer & Jeffrey A. Frankel, 1999. "Does Trade Cause Growth?," American Economic Review, American Economic Association, vol. 89(3), pages 379-399, June.
    16. Hausman, Jerry, 2015. "Specification tests in econometrics," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 38(2), pages 112-134.
    17. Dufour, Jean-Marie & Jasiak, Joann, 2001. "Finite Sample Limited Information Inference Methods for Structural Equations and Models with Generated Regressors," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 42(3), pages 815-843, August.
    18. Dufour, Jean-Marie, 2006. "Monte Carlo tests with nuisance parameters: A general approach to finite-sample inference and nonstandard asymptotics," Journal of Econometrics, Elsevier, vol. 133(2), pages 443-477, August.
    19. Marcelo J. Moreira, 2003. "A Conditional Likelihood Ratio Test for Structural Models," Econometrica, Econometric Society, vol. 71(4), pages 1027-1048, July.
    20. Lee, Yoonseok & Okui, Ryo, 2012. "Hahn–Hausman test as a specification test," Journal of Econometrics, Elsevier, vol. 167(1), pages 133-139.
    21. Joshua D. Angrist & Jörn-Steffen Pischke, 2009. "Mostly Harmless Econometrics: An Empiricist's Companion," Economics Books, Princeton University Press, edition 1, number 8769.
    22. Hwang, Hae-Shin, 1980. "Test of Independence between a Subset of Stochastic Regressors and Disturbances," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 21(3), pages 749-760, October.
    23. Jean‐Marie Dufour, 2003. "Identification, weak instruments, and statistical inference in econometrics," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 36(4), pages 767-808, November.
    24. Stock, James H & Wright, Jonathan H & Yogo, Motohiro, 2002. "A Survey of Weak Instruments and Weak Identification in Generalized Method of Moments," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(4), pages 518-529, October.
    25. Irwin, Douglas A. & Tervio, Marko, 2002. "Does trade raise income?: Evidence from the twentieth century," Journal of International Economics, Elsevier, vol. 58(1), pages 1-18, October.
    26. Blundell,Richard & Newey,Whitney & Persson,Torsten (ed.), 2007. "Advances in Economics and Econometrics," Cambridge Books, Cambridge University Press, number 9780521692106.
    27. Kiviet, Jan F. & Pleus, Milan, 2017. "The performance of tests on endogeneity of subsets of explanatory variables scanned by simulation," Econometrics and Statistics, Elsevier, vol. 2(C), pages 1-21.
    28. Wu, De-Min, 1983. "Tests of Causality, Predeterminedness and Exogeneity," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 24(3), pages 547-558, October.
    29. Richard Blundell & Joel L. Horowitz, 2007. "A Non-Parametric Test of Exogeneity," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 74(4), pages 1035-1058.
    30. Jean-Marie Dufour & Abdeljelil Farhat & Lucien Gardiol & Lynda Khalaf, 1998. "Simulation-based finite sample normality tests in linear regressions," Econometrics Journal, Royal Economic Society, vol. 1(Conferenc), pages 154-173.
    31. Joshua D. Angrist & Alan B. Krueger, 1993. "Split Sample Instrumental Variables," Working Papers 699, Princeton University, Department of Economics, Industrial Relations Section..
    32. Smith, Richard, 1983. "On the classical nature of the Wu-Hausman statistics for the independence of stochastic regressors and disturbance," Economics Letters, Elsevier, vol. 11(4), pages 357-364.
    33. Davidson, Russell & MacKinnon, James G., 1989. "Testing for Consistency using Artificial Regressions," Econometric Theory, Cambridge University Press, vol. 5(3), pages 363-384, December.
    34. Davidson, Russell & MacKinnon, James G., 1993. "Estimation and Inference in Econometrics," OUP Catalogue, Oxford University Press, number 9780195060119, December.
    35. Davidson, Russell & Godfrey, Leslie & MacKinnon, James G, 1985. "A Simplified Version of the Differencing Test," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 26(3), pages 639-647, October.
    36. Russell W. Davidson & James G. MacKinnon, 1985. "The Interpretation of Test Statistics," Canadian Journal of Economics, Canadian Economics Association, vol. 18(1), pages 38-57, February.
    37. Nakamura, Alice & Nakamura, Masao, 1981. "On the Relationships among Several Specification Error Tests Presented by Durbin, Wu, and Hausman," Econometrica, Econometric Society, vol. 49(6), pages 1583-1588, November.
    38. Chmelarova, Viera & Hill, R. Carter, 2010. "The Hausman pretest estimator," Economics Letters, Elsevier, vol. 108(1), pages 96-99, July.
    39. Jinyong Hahn & Jerry Hausman, 2002. "A New Specification Test for the Validity of Instrumental Variables," Econometrica, Econometric Society, vol. 70(1), pages 163-189, January.
    40. Smith, Richard J, 1984. "A Note on Likelihood Ratio Tests for the Independence between a Subset of Stochastic Regressors and Disturbances," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 25(1), pages 263-269, February.
    41. Frank Kleibergen, 2002. "Pivotal Statistics for Testing Structural Parameters in Instrumental Variables Regression," Econometrica, Econometric Society, vol. 70(5), pages 1781-1803, September.
    42. Blundell,Richard & Newey,Whitney & Persson,Torsten (ed.), 2007. "Advances in Economics and Econometrics," Cambridge Books, Cambridge University Press, number 9780521871549.
    43. N. Gregory Mankiw & David Romer & David N. Weil, 1992. "A Contribution to the Empirics of Economic Growth," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 107(2), pages 407-437.
    44. Dufour, Jean-Marie & Taamouti, Mohamed, 2007. "Further results on projection-based inference in IV regressions with weak, collinear or missing instruments," Journal of Econometrics, Elsevier, vol. 139(1), pages 133-153, July.
    45. Hwang, Hae-shin, 1985. "The equivalence of Hausman and Lagrange Multiplier tests of independence between disturbance and a subset of stochastic regressors," Economics Letters, Elsevier, vol. 17(1-2), pages 83-86.
    46. Revankar, Nagesh S & Hartley, Michael J, 1973. "An Independence Test and Conditional Unbiased Predictions in the Context of Simultaneous Equation Systems," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 14(3), pages 625-631, October.
    47. Jeffrey M. Wooldridge, 2015. "Control Function Methods in Applied Econometrics," Journal of Human Resources, University of Wisconsin Press, vol. 50(2), pages 420-445.
    48. Pesaran, M. Hashem & Smith, Richard J., 1990. "A unified approach to estimation and orthogonality tests in linear single-equation econometric models," Journal of Econometrics, Elsevier, vol. 44(1-2), pages 41-66.
    49. Wu, De-Min, 1973. "Alternative Tests of Independence Between Stochastic Regressors and Disturbances," Econometrica, Econometric Society, vol. 41(4), pages 733-750, July.
    50. Kiviet, Jan F. & Niemczyk, Jerzy, 2007. "The asymptotic and finite sample distributions of OLS and simple IV in simultaneous equations," Computational Statistics & Data Analysis, Elsevier, vol. 51(7), pages 3296-3318, April.
    51. Doko Tchatoka, Firmin & Dufour, Jean-Marie, 2020. "Exogeneity tests, incomplete models, weak identification and non-Gaussian distributions: Invariance and finite-sample distributional theory," Journal of Econometrics, Elsevier, vol. 218(2), pages 390-418.
    52. Marie-Claude Beaulieu & Jean-Marie Dufour & Lynda Khalaf, 2013. "Identification-Robust Estimation and Testing of the Zero-Beta CAPM," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 80(3), pages 892-924.
    53. Firmin Doko Tchatoka & Jean-Marie Dufour, 2016. "Exogeneity tests, weak identification, incomplete models and non-Gaussian distributions: Invariance and finite-sample distributional theory," School of Economics and Public Policy Working Papers 2016-01, University of Adelaide, School of Economics and Public Policy.
    54. Ruud, Paul A., 2000. "An Introduction to Classical Econometric Theory," OUP Catalogue, Oxford University Press, number 9780195111644, December.
    55. Wu, De-Min, 1974. "Alternative Tests of Independence between Stochastic Regressors and Disturbances: Finite Sample Results," Econometrica, Econometric Society, vol. 42(3), pages 529-546, May.
    56. Ahn, Seung C, 1997. "Orthogonality Tests in Linear Models," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 59(1), pages 183-186, February.
    57. Wong, Ka-fu, 1996. "Bootstrapping Hausman's exogeneity test," Economics Letters, Elsevier, vol. 53(2), pages 139-143, November.
    58. Firmin Doko Tchatoka & Jean‐Marie Dufour, 2014. "Identification‐robust inference for endogeneity parameters in linear structural models," Econometrics Journal, Royal Economic Society, vol. 17(1), pages 165-187, February.
    59. Blundell,Richard & Newey,Whitney K. & Persson,Torsten (ed.), 2007. "Advances in Economics and Econometrics," Cambridge Books, Cambridge University Press, number 9780521871532.
    60. Harrison, Ann, 1996. "Openness and growth: A time-series, cross-country analysis for developing countries," Journal of Development Economics, Elsevier, vol. 48(2), pages 419-447, March.
    61. Angrist, Joshua D & Krueger, Alan B, 1995. "Split-Sample Instrumental Variables Estimates of the Return to Schooling," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(2), pages 225-235, April.
    62. Wong, Ka-fu, 1997. "Effects on inference of pretesting the exogeneity of a regressor," Economics Letters, Elsevier, vol. 56(3), pages 267-271, November.
    63. Douglas Staiger & James H. Stock, 1997. "Instrumental Variables Regression with Weak Instruments," Econometrica, Econometric Society, vol. 65(3), pages 557-586, May.
    64. K. Newey, Whitney, 1985. "Generalized method of moments specification testing," Journal of Econometrics, Elsevier, vol. 29(3), pages 229-256, September.
    65. Spencer, David E & Berk, Kenneth N, 1981. "A Limited Information Specification Test [Specification Tests in Econometrics]," Econometrica, Econometric Society, vol. 49(4), pages 1079-1085, June.
    66. Reynolds, Roger A, 1982. "Posterior Odds for the Hypothesis of Independence between Stochastic Regressors and Disturbances," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 23(2), pages 479-490, June.
    67. Rivers, Douglas & Vuong, Quang H., 1988. "Limited information estimators and exogeneity tests for simultaneous probit models," Journal of Econometrics, Elsevier, vol. 39(3), pages 347-366, November.
    68. Blundell,Richard & Newey,Whitney K. & Persson,Torsten (ed.), 2007. "Advances in Economics and Econometrics," Cambridge Books, Cambridge University Press, number 9780521692090.
    69. Lance Lochner & Enrico Moretti, 2015. "Estimating and Testing Models with Many Treatment Levels and Limited Instruments," The Review of Economics and Statistics, MIT Press, vol. 97(2), pages 387-397, May.
    70. Ruud, Paul A., 1984. "Tests of Specification in Econometrics," Department of Economics, Working Paper Series qt4kq8m0hf, Department of Economics, Institute for Business and Economic Research, UC Berkeley.
    71. Wu, De-Min, 1983. "A remark on a generalized specification test," Economics Letters, Elsevier, vol. 11(4), pages 365-370.
    72. Jean-Marie Dufour, 1997. "Some Impossibility Theorems in Econometrics with Applications to Structural and Dynamic Models," Econometrica, Econometric Society, vol. 65(6), pages 1365-1388, November.
    73. Dufour, Jean-Marie & Khalaf, Lynda & Kichian, Maral, 2013. "Identification-robust analysis of DSGE and structural macroeconomic models," Journal of Monetary Economics, Elsevier, vol. 60(3), pages 340-350.
    74. Holly, Alberto, 1982. "A Remark on Hausman's Specification Test," Econometrica, Econometric Society, vol. 50(3), pages 749-759, May.
    75. Kabaila, Paul & Mainzer, Rheanna & Farchione, Davide, 2015. "The impact of a Hausman pretest, applied to panel data, on the coverage probability of confidence intervals," Economics Letters, Elsevier, vol. 131(C), pages 12-15.
    76. Newey, Whitney K, 1985. "Maximum Likelihood Specification Testing and Conditional Moment Tests," Econometrica, Econometric Society, vol. 53(5), pages 1047-1070, September.
    77. Hausman, Jerry A. & Taylor, William E., 1981. "A generalized specification test," Economics Letters, Elsevier, vol. 8(3), pages 239-245.
    78. Smith, Richard J., 1985. "Wald tests for the independence of stochastic variables and disturbance of a single linear stochastic simultaneous equation," Economics Letters, Elsevier, vol. 17(1-2), pages 87-90.
    79. Guggenberger, Patrik, 2010. "The impact of a Hausman pretest on the size of a hypothesis test: The panel data case," Journal of Econometrics, Elsevier, vol. 156(2), pages 337-343, June.
    80. Nakamura, Alice & Nakamura, Masao, 1985. "On the performance of tests by Wu and by Hausman for detecting the ordinary least squares bias problem," Journal of Econometrics, Elsevier, vol. 29(3), pages 213-227, September.
    81. Guggenberger, Patrik, 2010. "The Impact Of A Hausman Pretest On The Asymptotic Size Of A Hypothesis Test," Econometric Theory, Cambridge University Press, vol. 26(2), pages 369-382, April.
    82. Revankar, Nagesh S, 1978. "Asymptotic Relative Efficiency Analysis of Certain Tests of Independence in Structural Systems," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 19(1), pages 165-179, February.
    83. Wooldridge, Jeffrey M., 2014. "Quasi-maximum likelihood estimation and testing for nonlinear models with endogenous explanatory variables," Journal of Econometrics, Elsevier, vol. 182(1), pages 226-234.
    84. Beaulieu, Marie-Claude & Dufour, Jean-Marie & Khalaf, Lynda, 2007. "Multivariate Tests of MeanVariance Efficiency With Possibly Non-Gaussian Errors: An Exact Simulation-Based Approach," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 398-410, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kiviet, Jan F., 2020. "Testing the impossible: Identifying exclusion restrictions," Journal of Econometrics, Elsevier, vol. 218(2), pages 294-316.
    2. Doko Tchatoka, Firmin & Dufour, Jean-Marie, 2020. "Exogeneity tests, incomplete models, weak identification and non-Gaussian distributions: Invariance and finite-sample distributional theory," Journal of Econometrics, Elsevier, vol. 218(2), pages 390-418.
    3. Kiviet, Jan F., 2023. "Instrument-free inference under confined regressor endogeneity and mild regularity," Econometrics and Statistics, Elsevier, vol. 25(C), pages 1-22.
    4. Kiviet, Jan F. & Pleus, Milan, 2017. "The performance of tests on endogeneity of subsets of explanatory variables scanned by simulation," Econometrics and Statistics, Elsevier, vol. 2(C), pages 1-21.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Firmin Doko Tchatoka & Jean‐Marie Dufour, 2014. "Identification‐robust inference for endogeneity parameters in linear structural models," Econometrics Journal, Royal Economic Society, vol. 17(1), pages 165-187, February.
    2. Doko Tchatoka, Firmin, 2012. "Specification tests with weak and invalid instruments," Working Papers 15063, University of Tasmania, Tasmanian School of Business and Economics, revised 26 Jun 2012.
    3. Firmin DOKO TCHATOKA & Jean-Marie DUFOUR, 2016. "Exogeneity Tests, Incomplete Models, Weak Identification and Non-Gaussian Distributions : Invariance and Finite-Sample Distributional Theory," Cahiers de recherche 14-2016, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    4. Firmin Doko Tchatoka & Jean-Marie Dufour, 2016. "Exogeneity tests, weak identification, incomplete models and non-Gaussian distributions: Invariance and finite-sample distributional theory," School of Economics and Public Policy Working Papers 2016-01, University of Adelaide, School of Economics and Public Policy.
    5. Firmin Doko Tchatoka, 2015. "On bootstrap validity for specification tests with weak instruments," Econometrics Journal, Royal Economic Society, vol. 18(1), pages 137-146, February.
    6. Kiviet, Jan F. & Pleus, Milan, 2017. "The performance of tests on endogeneity of subsets of explanatory variables scanned by simulation," Econometrics and Statistics, Elsevier, vol. 2(C), pages 1-21.
    7. Dufour, Jean-Marie & Taamouti, Mohamed, 2007. "Further results on projection-based inference in IV regressions with weak, collinear or missing instruments," Journal of Econometrics, Elsevier, vol. 139(1), pages 133-153, July.
    8. Firmin Doko Tchatoka & Wenjie Wang, 2015. "On Bootstrap Validity for Subset Anderson-Rubin Test in IV Regressions," School of Economics and Public Policy Working Papers 2015-01, University of Adelaide, School of Economics and Public Policy.
    9. Wang, Wenjie & Doko Tchatoka, Firmin, 2018. "On Bootstrap inconsistency and Bonferroni-based size-correction for the subset Anderson–Rubin test under conditional homoskedasticity," Journal of Econometrics, Elsevier, vol. 207(1), pages 188-211.
    10. Doko Tchatoka, Firmin, 2011. "Testing for partial exogeneity with weak identification," MPRA Paper 39504, University Library of Munich, Germany, revised Mar 2012.
    11. Guo, Zijian & Kang, Hyunseung & Cai, T. Tony & Small, Dylan S., 2018. "Testing endogeneity with high dimensional covariates," Journal of Econometrics, Elsevier, vol. 207(1), pages 175-187.
    12. Nakamura, Alice & Nakamura, Masao, 1998. "Model specification and endogeneity," Journal of Econometrics, Elsevier, vol. 83(1-2), pages 213-237.
    13. Firmin Doko Tchatoka & Wenjie Wang, 2020. "Uniform Inference after Pretesting for Exogeneity," School of Economics and Public Policy Working Papers 2020-05, University of Adelaide, School of Economics and Public Policy.
    14. Guggenberger, Patrik & Ramalho, Joaquim J.S. & Smith, Richard J., 2012. "GEL statistics under weak identification," Journal of Econometrics, Elsevier, vol. 170(2), pages 331-349.
    15. Beaulieu, Marie-Claude & Dufour, Jean-Marie & Khalaf, Lynda, 2009. "Finite sample multivariate tests of asset pricing models with coskewness," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2008-2021, April.
    16. Firmin Doko Tchatoka & Lauren Slinger & Virginie Masson, 2020. "Revisiting empirical studies on the liquidity effect: An identication-robust approach," School of Economics and Public Policy Working Papers 2020-02, University of Adelaide, School of Economics and Public Policy.
    17. Dufour, Jean-Marie & Khalaf, Lynda & Kichian, Maral, 2010. "Estimation uncertainty in structural inflation models with real wage rigidities," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2554-2561, November.
    18. Dufour, Jean-Marie & Khalaf, Lynda & Kichian, Maral, 2006. "Inflation dynamics and the New Keynesian Phillips Curve: An identification robust econometric analysis," Journal of Economic Dynamics and Control, Elsevier, vol. 30(9-10), pages 1707-1727.
    19. Bolduc, Denis & Khalaf, Lynda & Moyneur, Érick, 2008. "Identification-robust simulation-based inference in joint discrete/continuous models for energy markets," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 3148-3161, February.
    20. Khalaf, Lynda & Urga, Giovanni, 2014. "Identification robust inference in cointegrating regressions," Journal of Econometrics, Elsevier, vol. 182(2), pages 385-396.

    More about this item

    Keywords

    exogeneity; Durbin-Wu-Hausman test; weak instrument; incomplete model; non-Gaussian; weak identification; identification robust; finite-sample theory; pivotal; invariance; Monte Carlo test; power;
    All these keywords.

    JEL classification:

    • C3 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables
    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mtl:montec:14-2016. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sharon BREWER (email available below). General contact details of provider: https://edirc.repec.org/data/cdmtlca.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.